In this paper, we present a fully automatic brain tumor segmentation and classification model using a Deep Convolutional Neural Network that includes a multiscale approach. One of the differences of our proposal with respect to previous works is that input images are processed in three spatial scales along different processing pathways. This mechanism is inspired in the inherent operation of the Human Visual System. The proposed neural model can analyze MRI images containing three types of tumors: meningioma, glioma, and pituitary tumor, over sagittal, coronal, and axial views and does not need preprocessing of input images to remove skull or vertebral column parts in advance. The performance of our method on a publicly available MRI image dataset of 3064 slices from 233 patients is compared with previously classical machine learning and deep learning published methods. In the comparison, our method remarkably obtained a tumor classification accuracy of 0.973, higher than the other approaches using the same database.
In their goal to effectively manage the use of existing infrastructures, intelligent transportation systems require precise forecasting of near‐term traffic volumes to feed real‐time analytical models and traffic surveillance tools that alert of network links reaching their capacity. This article proposes a new methodological approach for short‐term predictions of time series of volume data at isolated cross sections. The originality in the computational modeling stems from the fit of threshold values used in the stationary wavelet‐based denoising process applied on the time series, and from the determination of patterns that characterize the evolution of its samples over a fixed prediction horizon. A self‐organizing fuzzy neural network is optimized in its configuration parameters for learning and recognition of these patterns. Four real‐world data sets from three interstate roads are considered for evaluating the performance of the proposed model. A quantitative comparison made with the results obtained by four other relevant prediction models shows a favorable outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.