Recently using a Madelung fluid description a connection between envelope-like solutions of NLS-type equations and soliton-like solutions of KdV-type equations was found and investigated by R. Fedele et al. (2002). A similar discussion is given for the class of derivative NLS-type equations. For a motion with stationary profile current velocity the fluid density satisfies generalized stationary Gardner equation, and solitary wave solutions are found. For the completely integrable cases these are compared with existing solutions in literature.
The discrete self-trapping equation (DST) represents an useful model for several properties of one-dimensional nonlinear molecular crystals. The modulational instability of DST equation is discussed from a statistical point of view, considering the oscillator amplitude as a random variable. A kinetic equation for the two-point correlation function is written down, and its linear stability is studied. Both a Gaussian and a Lorentzian form for the initial unperturbed wave spectrum are discussed. Comparison with the continuum limit (NLS equation) is done.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.