Observations indicate that Ellerman bombs (EBs) and chromospheric microflares both occur in the lower solar atmosphere, and share many common features, such as temperature enhancements, accompanying jet-like mass motions, short lifetime, and so on. These strongly suggest that EBs and chromospheric microflares could both probably be induced by magnetic reconnection in the lower solar atmosphere. With gravity, ionization and radiation considered, we perform two-dimensional numerical simulations of magnetic reconnection in the lower solar atmosphere. The influence of different parameters, such as intensity of the magnetic field and anomalous resistivity, on the results are investigated. Our result demonstrates that the temperature increases are mainly due to the joule dissipation caused by magnetic reconnection. The spectral profiles of EBs and chromospheric microflares are calculated with the non-LTE radiative transfer theory and compared with observations. It is found that the typical features of the two phenomena can be qualitatively reproduced.
The binary YY Gem shows many interesting properties, one of which is the periodicity in its flaring rate. The period, which is about $48 \pm 3$ min, was ever interpreted in terms of the oscillation of a filament. In this paper, we propose a new model to explain this phenomenon by means of 2.5-dimensional MHD numerical simulations. It is found that magnetic reconnection is induced as the coronal loops rooted on both stars inflate and approach each other, which is driven by the differential stellar rotation. The magnetic reconnection is modulated by fast-mode magnetoacoustic waves which are trapped between the surfaces of the two stars, so that the reconnection rate presents a periodic behaviour. With the typical parameters for the binary system, the observed period can be reproduced. We also derive an empirical formula to relate the period of the flaring rate to the coronal temperature and density, as well as the magnetic field.Comment: 9 pages, 9 figures, accepted by MNRA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.