This article considers the leader-following consensus problem of heterogeneous multi-agent systems. The proposed multi-agent system is consisted of heterogeneous agents where each agents have their own nonlinear dynamic behavior. To overcome difficulty from heterogeneous nonlinear intrinsic dynamics of agents, a fuzzy disturbance observer is adopted. In addition, based on the Lyapunov stability theory, an adaptive control method is used to compensate the observation error caused by the difference between the unknown factor and estimated values. Two numerical examples are given to illustrate the effectiveness of the proposed method.
In this paper, the synchronization problem for a class of neutral complex dynamical networks with coupling time-varying delays is considered. A delay-dependent synchronization criterion is derived for the synchronization of neutral complex dynamical networks. By the use of a convex representation of the sector-restricted nonlinearity in system dynamics, the stability condition based on the discretized Lyapunov-Krasovskii functional is obtained via LMI (linear matrix inequality) formulation. The effectiveness of our work is verified through a numerical example and simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.