Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 MJ. 192 simultaneously fired laser beams heat ignition emulate hohlraums to radiation temperatures of 3.3 million Kelvin compressing 1.8-millimeter capsules by the soft x rays produced by the hohlraum. Self-generated plasma-optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum producing symmetric x-ray drive as inferred from the shape of the capsule self-emission. These experiments indicate conditions suitable for compressing deuterium-tritium filled capsules with the goal to achieve burning fusion plasmas and energy gain in the laboratory.With completion (1) and commissioning (2) of the National Ignition Facility (NIF) the quest for producing a burning fusion plasma has begun (3, 4). The goal of these experiments is to compress matter to densities and temperatures higher than the interior of the sun (5-7) which will initiate nuclear fusion and burn of hydrogen isotopes (8-10). This technique holds promise to demonstrate a highly efficient carbon-free process that will burn milligram quantities of nuclear fuel on each laser shot for producing energy gain in the laboratory.The NIF (11) consists of 192 laser beams that have been arranged into cones of beams to irradiate a target from the top and bottom hemispheres. This "indirect-drive" laser geometry has been chosen for the first experiments to heat the interior of centimeter-scale cylindrical gold hohlraums (8,(12)(13)(14)(15) through laser entrance holes (LEH) on the top and bottom end of the cylinder (Fig. 1). Hohlraums act as radiation enclosures that convert the optical laser light into soft x-rays that are characterized by the radiation temperature T RAD . Present ignition designs operate at temperatures of 270 to 305 eV or 3.1 to 3.5 million K. The radiation field compresses a spherical fusion capsule mounted in the center of the hohlraum by x-ray ablation of the outer shell. The ablation process compresses the cryogenically prepared solid deuterium-tritium fuel layer in a spherical rocket implosion. In the final stages, the fuel reaches densities 1000-times solid and the central hot spot temperatures will approach 100 million K to initiate the nuclear burn process.We have symmetrically imploded 1.8-mm diameter fusion capsules in cryogenically fielded centimeter-scale hohlraums at 20 K. These experiments show efficient hohlraum heating to radiation temperatures of 3.3 million K. In addition, the large scale-length plasmas encountered in these experiments have allowed us to use self-generated plasma optics gratings (16) to control the radiation symmetry (17) and to achieve symmetric fusion capsule implosions.Figure 2 A shows the laser power at the frequency-tripled wavelength of 351 nm versus time for two different pulse shapes. These 11-ns and 16-ns long pulses heat 8.4-mm long, 4.6-mm diameter hohlraums with 20% helium, 80% hydrogen (atomic) mixtures and ...
Despite its fundamental importance for a broad range of applications, little is understood about the behaviour of metals during the initial phase of shock compression. Here, we present molecular dynamics (MD) simulations of shock-wave propagation through a metal allowing a detailed analysis of the dynamics of high strain-rate plasticity. Previous MD simulations have not seen the evolution of the strain from one- to three-dimensional compression that is observed in diffraction experiments. Our large-scale MD simulations of up to 352 million atoms resolve this important discrepancy through a detailed understanding of dislocation flow at high strain rates. The stress relaxes to an approximately hydrostatic state and the dislocation velocity drops to nearly zero. The dislocation velocity drop leads to a steady state with no further relaxation of the lattice, as revealed by simulated X-ray diffraction.
In situ x-ray diffraction studies of iron under shock conditions confirm unambiguously a phase change from the bcc (alpha) to hcp (epsilon) structure. Previous identification of this transition in shock-loaded iron has been inferred from the correlation between shock-wave-profile analyses and static high-pressure x-ray measurements. This correlation is intrinsically limited because dynamic loading can markedly affect the structural modifications of solids. The in situ measurements are consistent with a uniaxial collapse along the [001] direction and shuffling of alternate (110) planes of atoms, and are in good agreement with large-scale nonequilibrium molecular dynamics simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.