Ergot alkaloids are hypothesized to cause vasoconstriction in the midgut, and prior exposure may affect the vasoactivity of these compounds. The objectives of this study were to profile vasoactivity of ergot alkaloids in bovine mesenteric artery (MA) and vein (MV) and determine if previous exposure to endophyte-infected tall fescue seed affected vasoactivity of ergocryptine (ERP), ergotamine (ERT), ergocristine (ERS), ergocornine (ERO), ergonovine (ERN), lysergic acid (LSA), ergovaline-containing tall fescue seed extract (EXT), and 5-hydroxytryptamine (5HT; serotonin). Ruminally cannulated Angus steers (n = 12; BW = 547 ± 31 kg) were paired by weight and randomly assigned to 6 blocks. Steers were ruminally dosed daily with 1 kg of either endophyte-infected (E+; 4.45 mg ergovaline/kg DM) or endophyte-free (E-; 0 mg ergovaline/kg DM) tall fescue seed for 21 d before slaughter. Branches of MA and MV supporting the cranial portion of the ileum were collected after slaughter on d 22, placed in a modified Krebs-Henseleit buffer on ice, cleaned, sectioned, and mounted in a multimyograph chamber. Contractile response was normalized to a maximum KCl response. Inner diameter (P = 0.04) and outer diameter (P = 0.02) of MA were smaller for E+ steers than E- steers. Maximum contractile responses to 120 mM KCl were not different between seed treatments in MA (P = 0.33; E-: 2.67 ± 0.43 g; E+: 3.33 ± 0.43 g) or MV (P = 0.26; E-: 2.01 ± 0.18 g; E+: 1.81 ± 0.18 g). Steers receiving E+ had a smaller (P < 0.01) MA contractile response than E- steers to ERP, ERT, ERS, ERO, ERN, EXT, and 5HT. Steers receiving E+ had a smaller (P < 0.05) MV contractile response than E- steers to ERP, ERT, ERS, ERN, EXT, and 5HT. Lysergic acid failed to induce a contractile response in MA and MV. The contractile response in MA and MV of E- steers produced by 5HT was very large. The EXT was the most potent (P < 0.05) agonist in MV and MA of E+ steers. These data showed that ergot alkaloids were vasoactive in the bovine midgut, and steers exposed to E+ had diminished contractility to some ergot alkaloids in small intestinal vasculature. The findings of this study suggest that dietary exposure to ergot alkaloids has the potential to alter nutrient absorption from the midgut by decreasing blood flow to and from the midgut due to vasoconstriction.
An experiment was conducted to determine if ergot alkaloids affect blood flow to the absorptive surface of the rumen. Steers (n=8) were pair-fed alfalfa cubes and received ground endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum; E+) seed (0.015 mg ergovaline·kg BW(-1)·d(-1)) or endophyte-free tall fescue (E-) seed via the rumen cannula 2x daily for 7 d at thermoneutral (TN; 22°C) and heat stress (HS; 32°C) conditions. On d 8, the rumen was emptied and rinsed. A buffer containing VFA was incubated in the following sequence: control (CON), 15 μg ergovaline·kg BW(-1) (1×EXT) from a tall fescue seed extract, and 45 μg ergovaline·kg BW(-1) (3×EXT). For each buffer treatment there were two 30-min incubations: a 30-min incubation of a treatment buffer with no sampling followed by an incubation of an identical sampling buffer with the addition of Cr-EDTA and deuterium oxide (D2O). Epithelial blood flow was calculated as ruminal clearance of D2O corrected for influx of physiological water and liquid outflow. Feed intake decreased with dosing E+ seed at HS but not at thermoneutral conditions (TN; P<0.02). Dosing E+ seed decreased serum prolactin (P<0.005) at TN. At HS, prolactin decreased in both groups over the 8-d experiment (P<0.0001), but there was no difference in E+ and E- steers (P=0.33). There was a seed treatment×buffer treatment interaction at TN (P=0.038), indicating that E+ seed treatment decreased reticuloruminal epithelial blood flow at TN during the CON incubation, but the two groups of steers were not different during 1×EXT and 3×EXT (P>0.05). Inclusion of the extract in the buffer caused at least a 50% reduction in epithelial blood flow at TN (P=0.004), but there was no difference between 1×EXT and 3×EXT. There was a seed × buffer treatment interaction at HS (P=0.005), indicating that the reduction of blood flow induced by incubating the extract was larger for steers receiving E- seed than E+ seed. Volatile fatty acid flux was reduced during the 1×EXT and 3×EXT treatments (P<0.01). An additional experiment was conducted to determine the effect of time on blood flow and VFA flux because buffer sequence could not be randomized. Time either increased (P=0.05) or did not affect blood flow (P=0.18) or VFA flux (P>0.80), indicating that observed differences are due to the presence of ergot alkaloids in the rumen. A decrease in VFA absorption could contribute to the signs of fescue toxicosis including depressed growth and performance.
It is known that the transportation stress of market pigs can affect their carcass quality and that blood concentrations of glucose, creatine kinase (CK) and lactate dehydrogenase (LDH) are indicators of the transportation stress. Fifty-seven gilts and 57 barrows weighing approximately 110 kg were randomly assigned into six groups in a 3 [high (0.31 m 2 /100 kg BW)-, medium (0.35 m 2 )and low (0.39 m 2 )-stocking densities]×2 [1 h vs. 3 h transportation time] arrangement of treatments. Blood samples were taken during transportation and after 2 h lairage. The percentage of "standing" animals during transportation was less in the low-than in the mediumor high-stocking density; the opposite was true for the "sitting" posture. Plasma concentrations of glucose, CK and LDH increased after loading and declined to the resting levels after lairage. Concentrations of CK and LDH were greater in the 3 h vs. 1 h transportation group. Moreover, the LDH concentration was less in the low-than in the medium-or high-density group. Also detected was a significant interaction between the stocking density and transportation time in all of these blood variables. The incidence of pale, soft and exudative (PSE) carcass was greatest in the high-stocking density group. Interestingly, the PSE incidence increased following the 3 h vs. 1 h transportation at the low-density, but not at the medium-density. Results suggest that the medium-density may be preferable to the lowdensity in the long-distance transportation.
This study examined the effects of bacterial inoculants on chemical composition and fermentation indices of barley silage. Barley forage (Youngyang) was harvested at 24% dry matter (DM) and wilted to 47.9% DM. The wilted barley forage was chopped to 3–5 cm length and applied with no inoculant (CON), L. plantarum (1×1010 cfu/g, LP) or Effective Microorganisms (0.5×109 cfu/g, EM). Then the forages were ensiled in four replications for each treatment in 20 L mini silos and stored for 100 days. The contents of crude protein and ether extract were higher in CON silage ensiled for 100-d, while the contents of DM and crude ash were higher in EM silage (p<0.05). The contents of ADF, NDF and hemicellulose as well as the in vitro DM digestibility were not affected by microbial inoculation (p>0.05). The pH, ammonia-N concentration and lactate to acetate ratio were higher (p<0.05) in CON silage, while lactate concentrations were higher (p<0.05) in CON and LP silage. Acetate concentration and lactic acid bacteria was increased (p<0.05) by both inoculants (LP and EM), but propionate concentration and yeast was increased (p<0.05) by EM and LP, respectively. These results indicated that the fermentation quality of barley silage was improved by the application of bacterial inoculants.
This bio-acoustic study was aimed at classifying the different porcine wasting diseases through sound analysis with emphasis given to differences in the acoustic footprints of coughs in porcine circo virus type 2 (PCV2), porcine reproductive and respiratory syndrome (PRRS) virus and Mycoplasma hyopneumoniae (MH) -infected pigs from a normal cough. A total of 36 pigs (Yorkshire×Landrace×Duroc) with average weight ranging between 25-30 kg were studied, and blood samples of the suspected infected pigs were collected and subjected to serological analysis to determine PCV2, PRRS and MH. Sounds emitted by coughing pigs were recorded individually for 30 minutes depending on cough attacks by a digital camcorder placed within a meter distance from the animal. Recorded signals were digitalized in a PC using the Cool Edit Program, classified through labeling method, and analyzed by one-way analysis of variance and discriminant analysis. Input features after classification showed that normal cough had the highest pitch level compared to other infectious diseases (p<0.002) but not statistically different from PRRS and MH. PCV2 differed statistically (p<0.002) from the normal cough and PRRS but not from MH. MH had the highest intensity and all coughs differed statistically from each other (p<0.0001). PCV2 was statistically different from others (p<0.0001) in formants 1, 2, 3 and 4. There was no statistical difference in duration between different porcine diseases and the normal cough (p>0.6863). Mechanisms of cough sound creation in the airway could be used to explain these observed acoustic differences and these findings indicated that the existence of acoustically different cough patterns depend on causes or the animals' respiratory system conditions. Conclusively, differences in the status of lungs results in different cough sounds. Finally, this study could be useful in supporting an early detection method based on the on-line cough counter algorithm for the initial diagnosis of sick animals in breeding farms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.