Aspergillus section Nidulantes includes species with striking morphological characters, such as biseriate conidiophores with brown-pigmented stipes, and if present, the production of ascomata embedded in masses of Hülle cells with often reddish brown ascospores. The majority of species in this section have a sexual state, which were named Emericella in the dual name nomenclature system. In the present study, strains belonging to subgenus Nidulantes were subjected to multilocus molecular phylogenetic analyses using internal transcribed spacer region (ITS), partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Nine sections are accepted in subgenus Nidulantes including the new section Cavernicolus. A polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of section Nidulantes. Based on this approach, section Nidulantes is subdivided in seven clades and 65 species, and 10 species are described here as new. Morphological characters including colour, shape, size, and ornamentation of ascospores, shape and size of conidia and vesicles, growth temperatures are important for identifying species. Many species of section Nidulantes produce the carcinogenic mycotoxin sterigmatocystin. The most important mycotoxins in Aspergillus section Nidulantes are aflatoxins, sterigmatocystin, emestrin, fumitremorgins, asteltoxins, and paxillin while other extrolites are useful drugs or drug lead candidates such as echinocandins, mulundocandins, calbistrins, varitriols, variecolins and terrain. Aflatoxin B1 is produced by four species: A. astellatus, A. miraensis, A. olivicola, and A. venezuelensis.
Although there is a continuous increase in available molecular data, not all sequence identities in public databases are always properly verified and managed. Here, the sequences available in GenBank for Fuscoporia (Hymenochaetales) were validated. Many morphological characters of Fuscoporia overlap among the species, emphasizing the role of molecular identification for accuracy. The identities of 658 Fuscoporia GenBank internal transcribed spacer (ITS) sequences were assessed using ITS phylogeny, revealing 109 (16.6%) misidentified and 196 (29.8%) unspecified sequences. They were validated and re-identified based on the research articles they were published in and, if unpublished, based on sequences from the type, type locality-derived sequences, or otherwise reliable sequences. To enhance the resolution of species delimitation, a phylogenetic assessment of a multi-marker dataset (ITS + nrLSU + rpb2 + tef1) was conducted. The multi-marker phylogeny resolved five of the twelve species complexes found in the ITS phylogeny and uncovered five new Fuscoporia species: F. dolichoseta, F. gilvoides, F. koreana, F. reticulata, and F. semicephala. The validated ITS sequences in this study may prevent further accumulation of misidentified sequences in public databases and contribute to a more accurate taxonomic evaluation of Fuscoporia species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.