Hyperprolactinaemia during lactation is a consequence of the sucking stimulus and in part due to reduced prolactin (PRL) negative feedback. To date, the mechanisms involved in this diminished sensitivity to PRL feedback are unknown but may involve changes in PRL signal transduction within tuberoinfundibular dopaminergic (TIDA) neurons. Therefore, we investigated signal transducers and activators of transcription (STAT) 5 signaling in the TIDA neurons of lactating rats. Dual-label confocal immunofluorescence studies were used to determine the intracellular distribution of STAT5 within TIDA neurons in the dorsomedial arcuate nucleus. In lactating rats with pups removed for 16 h, injection of ovine PRL significantly (P < 0.05) increased the STAT5 nuclear/cytoplasmic ratio compared with vehicle-treated mothers. In contrast, ovine PRL injection did not increase the STAT5 nuclear/cytoplasmic ratio in lactating mothers with pups, demonstrating that PRL signal transduction through STAT5 is reduced in TIDA neurons in the presence of pups. To investigate possible mechanisms involved in reduced PRL signaling, we examined the expression of suppressors of cytokine signaling (SOCS) proteins. Northern analysis on whole hypothalamus showed that CIS (cytokine-inducible SH2 domain-containing protein), but not SOCS1 or SOCS3, mRNA expression was significantly (P < 0.01) up-regulated in suckled lactating rats. Semiquantitative RT-PCR on arcuate nucleus micropunches also showed up-regulation of CIS transcripts. Immunofluorescence studies demonstrated that CIS is expressed in all TIDA neurons in the dorsomedial arcuate nucleus, and the intensity of CIS staining in these neurons is significantly (P < 0.05) increased in lactating rats with sucking pups. Together, these results support the hypothesis that loss of sensitivity to PRL-negative feedback during lactation is a result of increased CIS expression in TIDA neurons.
RT-PCR followed by 5 -and 3 -rapid amplification of cDNA ends was used to clone and sequence ovine prolactin-releasing peptide (PrRP). The cDNA was characterised by short 5 -and 3 -untranslated regions and a GC-rich (71%) coding region. The nucleotide and deduced amino acid sequences for the coding region showed 95·6 and 94·9% identity with bovine PrRP but the amino acid sequence of PrRP31 was conserved between these species. Northern blot analysis and RT-PCR showed that, as in the rat, the peptide was more abundantly expressed in the brainstem than the hypothalamus. However, in the ovine hypothalamus, PrRP mRNA expression was more widespread than in the rat, with expression detected in both rostral and caudal parts of the mediobasal hypothalamus. The effects of synthetic ovine PrRP on prolactin secretion both in vitro and in vivo were also examined. In primary cultures of sheep pituitary cells, PrRP significantly (P<0·01) increased prolactin concentrations in the culture medium but the response was not observed in every experiment and was only seen when pituitary glands were dispersed with collagenase rather than trypsin. PrRP was much less potent than TRH which caused a significant (P<0·01) two-to threefold increase in prolactin concentrations in every experiment. Intravenous (10 and 50 nmol) or intracerebroventricular (10 and 50 nmol) injection of PrRP had no significant effect on either plasma prolactin concentration or pulsatile LH secretion whereas intravenous injection of TRH (10 nmol) produced a highly significant (P<0·01) and more than sevenfold stimulation of plasma prolactin concentrations. In conclusion, these results suggest that PrRP is unlikely to be an important prolactin-releasing factor in this species.
PRL and placental lactogen (PL) play key roles in maintaining the rodent corpus luteum through pregnancy. Suppressors of cytokine signaling (SOCS) have been shown to decrease cell sensitivity to cytokines, including PRL, and so here we have addressed the issue of whether luteolysis induced by prostaglandin F(2alpha) (PGF(2alpha)) might up-regulate SOCS proteins to inhibit PRL signaling. In d 19 pregnant rats, cloprostenol, a PGF(2alpha) analog, rapidly induced transcripts for SOCS-3 and, to a lesser extent, SOCS-1. We also found increased SOCS-3 protein in the ovary by immunoblot and in the corpus luteum by immunohistochemistry. Increased SOCS-3 expression was preceded by an increase in STAT3 tyrosine phosphorylation 10 min after cloprostenol injection and was maintained for 4 h, as determined by gel shift and immunohistochemistry. Induction of SOCS-3 was accompanied by a sharp decrease in active STAT5, as determined by gel-shift assay and by loss of nuclear localized STAT5. Four hours after cloprostenol administration, the corpus luteum was refractory to stimulation of STAT5 by PRL administration, and this was not due to down-regulation of PRL receptor. Therefore, induction of SOCS-3 by PGF(2alpha) may be an important element in the initiation of luteolysis via rapid suppression of luteotropic support from PL.
We have examined the distribution of the pituitary adenylate cyclase activating polypeptide type I receptor (PAC1R) in the ewe hypothalamus by reverse transcription-polymerase chain reaction, in situ hybridization and immunohistochemistry. PAC1R mRNA was highly expressed in the mediobasal hypothalamus of the ewe, particularly in the arcuate nucleus and ventromedial hypothalamus, compared to other hypothalamic regions. Similar results were obtained from immunohistochemistry using a specific PAC1R antibody. Intense immunolabelling was observed in the arcuate nucleus, external zone of the median eminence and ventromedial hypothalamus. Only relatively weak immunolabelling was observed in other hypothalamic regions, including the paraventricular nucleus and supraoptic nucleus. In the ewe, PACAP acts via the arcuate nucleus to suppress prolactin secretion. Therefore we examined whether PAC1R was present on the tuberoinfundibular dopamine (TIDA) neurones in this nucleus. Dual immunofluorescence labelling for PAC1R and tyrosine hydroxylase revealed that 21.2 +/- 1.7% of dopaminergic neurones in the arcuate nucleus (A12 cell group) also stained for PAC1R. By contrast, other hypothalamic dopaminergic cell groups (A11, A13, A14 and A15) exhibited little (< 3%) or no colocalization. Overall, our results indicate that, in the ewe hypothalamus, PAC1R is most concentrated in the arcuate nucleus, where it is localized on a substantial proportion of dopaminergic neurones. These observations, together with previous in vivo studies, suggest that PACAP could act directly on TIDA neurones via PAC1R to increase dopamine release and consequently inhibit prolactin secretion in the sheep.
Recently we have shown that prostaglandin-induced luteolysis in pregnant rats involves resistance to prolactin-receptor signalling through the JAK2/STAT5 pathway.1 In the present study, we investigate whether PGF2alpha acts similarly to inhibit GH signalling in the ovine corpus luteum. The oestrous cycle of ewes was synchronised using cloprostenol and CIDR-G devices with oestrus detected by testosterone treated wethers with raddles. Twelve days after the first recorded oestrous mark, ewes were given an intramuscular injection of either saline or cloprostenol (125 µg), followed 1 h later with an intravenous injection (jugular vein) of either vehicle or 1.5 mg recombinant bovine GH (rbGH, Monsanto). After a further 15 min ewes were killed by pentobarbitone overdose and the corpus luteum removed. Tyrosine phosphorylation of STAT5 (STAT-P) in the corpus luteum was determined by immunoprecipitation and Western blot (n = 4 ewes/treatment). STAT5-P levels were relatively low in all ewes that were not treated with rbGH. Treatment with rbGH significantly (P < 0.01) increased STAT5-P in the corpus luteum of ewes pretreated with saline, compared to both control groups. However the STAT5-P response to rbGH was significantly (P < 0.01) reduced by the pretreatment with cloprostenol, although the response remained significantly (P < 0.05) higher than both control groups. In summary we have shown that (1) as expected, the GH-receptor signals through STAT5 in the ovine corpus luteum and (2) cloprostenol induces resistance to this GH-receptor signalling pathway. (1)Curlewis et al. (2002). Endocrinology 143, 3984–3993.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.