Equations governing modulations of weakly nonlinear water waves are described. The modulations are coupled with wave-induced mean flows except in the case of water deeper than the modulation length scale. Equations suitable for water depths of the order the modulation length scale are deduced from those derived by Davey and Stewartson [5] and Dysthe [6], A number of cases in which these equations reduce to a one dimensional nonlinear Schrodinger (NLS) equation are enumerated.Several analytical solutions of NLS equations are presented, with discussion of some of their implications for describing the propagation of water waves. Some of the solutions have not been presented in detail, or in convenient form before. One is new, a " rational" solution describing an "amplitude peak" which is isolated in space-time. Ma's [13] soli ton is particularly relevant to the recurrence of uniform wave trains in the experiment of Lake etal. [\O].In further discussion it is pointed out that although water waves are unstable to three-dimensional disturbances, an effective description of weakly nonlinear two-dimensional waves would be a useful step towards describing ocean wave propagation.
Equations of motion are derived for long waves in water of varying depth. The equations are for small amplitude waves, but do include non-linear terms. They correspond to the Boussinesq equations for water of constant depth. Solutions have been calculated numerically for a solitary wave on a beach of uniform slope. These solutions include a reflected wave, which is also derived analytically by using the linearized long-wave equations.
If a long wave of elevation travels in shallow water it steepens and forms a bore. The bore is undular if the change in surface elevation of the wave is less than 0·28 of the original depth of water. This paper describes the growth of an undular bore from a long wave which forms a gentle transition between a uniform flow and still water. A physical account of its development is followed by the results of numerical calculations. These use finite-difference approximations to the partial differential equations of motion. The equations of motion are of the same order of approximation as is necessary to derive the solitary wave. The results are in general agreement with the available experimental measurements.
Two-dimensional steady surface waves on a shearing flow are computed for the special case where the flow has uniform vorticity, i.e. in the absence of waves the velocity varies linearly with height. A boundary-integral method is used in the computation which is similar to that of Simmen & Saffman (1985) who describe such waves on deep water. Particular attention is given to the effects of finite depth with descriptions of waves of limiting steepness, waves with eddies beneath their crests and extremely high waves on high-speed flows.Many qualitative features of these waves are relevant to steep waves propagating in shallow water, or on a strong wind-induced drift current. An important practical point in the interpretation of wave measurements of wind driven waves is that mean kinetic energy and potential energy densities are unequal even for infinitesimal waves. This may mean that wave energy spectra deduced from surface-elevation measurements in the conventional way may sometimes be misleading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.