We show that monoenergetic ion beams can be accelerated by moderate Mach number collisionless, electrostatic shocks propagating in a long scale-length exponentially decaying plasma profile.Strong plasma heating and density steepening produced by an intense laser pulse near the critical density can launch such shocks that propagate in the extended plasma at high velocities. The generation of a monoenergetic ion beam is possible due to the small and constant sheath electric field associated with the slowly decreasing density profile. The conditions for the acceleration of high-quality, energetic ion beams are identified through theory and multidimensional particle-incell simulations. The scaling of the ion energy with laser intensity shows that it is possible to generate ∼ 200 MeV proton beams with state-of-the-art 100 TW class laser systems.
Multi-dimensional particle-in-cell simulations are used to study the generation of electrostatic shocks in plasma and the reflection of background ions to produce high-quality and high-energy ion beams. Electrostatic shocks are driven by the interaction of two plasmas with different density and/or relative drift velocity. The energy and number of ions reflected by the shock increase with increasing density ratio and relative drift velocity between the two interacting plasmas. It is shown that the interaction of intense lasers with tailored near-critical density plasmas allows for the efficient heating of the plasma electrons and steepening of the plasma profile at the critical density interface, leading to the generation of high-velocity shock structures and high-energy ion beams. Our results indicate that high-quality 200 MeV shock-accelerated ion beams required for medical applications may be obtained with current laser systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.