In a randomized controlled trial, 30 pigs were orally treated with histamine (60 mg). In addition, half of the animals underwent a specific blockade of the enzyme diamine oxidase (DAO), which is the main histamine catabolising enzyme in the intestinal tract. Only these DAO-blocked animals exhibited severe clinical symptoms (e.g. hypotension, flush, vomiting) and, in parallel, showed tremendous elevations of plasma histamine levels of up to 160 ng/ml. 3 out of 15 animals in this group died within the experimental period. In contrast, the control animals neither exhibited plasma histamine levels above 5 ng/ml nor had any clinical reactions. These results contradict the current opinion that oral histamine intake in food is not clinically relevant, especially since many commonly used drugs are DAO-inhibitors and approximately 20% of our population take these drugs. Apart from drugs, some other factors (alcohol, spoilt food etc.) can also function via a blockade of DAO as an additional risk. DAO-blockade is therefore a real epidemiological problem. Evidence is presented here for the new disease concept: Food-Induced Histaminosis.
We determined the toxin-gene profiles of 239 endemic, invasive group A streptococcal (GAS) isolates that circulated, within a 5-year period, in European university hospitals. Profiling was performed by use of multiplex polymerase chain reaction that screened for 9 streptococcal pyrogenic exotoxins (speA, speB, speC, speF, speG, speH, speJ, ssa, and smeZ). Analysis revealed that invasive GAS isolates do not share a common toxin-gene profile. Although all emm types were characterized by several different toxin-gene profiles, a predominance of 1 or 2 toxin-gene profiles could be observed, reflecting that a few invasive clones have spread successfully throughout the world. Remarkably, statistical pair-wise analysis of individual toxin genes revealed that strains that did not share the predominant profile still showed a nonrandom distribution of key toxin genes characteristic of the specific emm type. This could indicate that M proteins function, directly or indirectly, as barriers for horizontal gene exchange.
Aims Large oral doses of betaine have proved effective in lowering plasma homocysteine in severe hyperhomocysteinaemia. The pharmacokinetic characteristics and metabolism of betaine in humans have not been assessed and drug monitoring for betaine therapy is not available. We studied the pharmacokinetics of betaine and its metabolite dimethylglycine (DMG) in healthy subjects and in three patients with homocystinuria. Methods Twelve male volunteers underwent an open-label study. After one single administration of 50 mg betaine kg -1 body weight and during continuous intake of twice daily 50 mg kg -1 body weight, serial blood samples and 24 h urines were collected to determine betaine and DMG plasma concentrations and urinary excretion, respectively. Patients were evaluated after one single dose of betaine. .70 h, respectively), whereas absorption remained unchanged. DMG concentrations increased significantly after betaine administration and accumulation occurred to the same extent as with betaine. Renal clearance was low and urinary excretion of betaine was equivalent to 4% of the ingested dose. Distribution and elimination kinetics in homocystinuric patients appeared to be accelerated. Conclusions Betaine plasma concentrations change rapidly after ingestion. Elimination half-life increased during continuous dosing over 5 days. Betaine is mainly eliminated by metabolism. More pharmacokinetic and pharmacodynamic studies in hyperhomocysteinaemic patients are needed to refine the current treatment with betaine.
Protein kinase C (PKC) plays a pivotal role in signal transduction involved in the control of cell proliferation, differentiation and apoptosis. Interference with such signaling pathways may result in altered tumor cell response to antineoplastic drugs. We investigated the effects of two selective PKC inhibitors as single agents and in combination with cisplatin in cell lines derived from squamous cell carcinomas of the head and neck (SCCHN). Safingol (Saf) is directed against the regulatory domain, whereas chelerythrine (Che) interacts with the catalytic domain of PKC. In six SCCHN cell lines (UM-SCC 11B, 14A, 14C and 22B, 8029NA, and a 5-fold cisplatin-resistant subline 8029DDP). PKC activities ranged between 1 and 158 IU/1 x 10(7) cells, and they were inversely proportional to the amount of cellular epidermal growth factor receptor. Using the colorimetric MTT assay, PKC inhibitors Saf and Che showed comparable dose-dependent growth inhibition. The 50% inhibitory concentrations (IC50) were between 3.8-8.6 microM for Saf and 8.5-13.6 microM for Che with no relationship to PKC activity or cisplatin sensitivity of the respective cell lines. Combinations of cisplatin (IC50 = 0.4-5.8 microg/ml) and either PKC inhibitor (5 microM Saf, 10 microM Che) led to a significant decrease of cisplatin IC50 values in most cell lines. However, comparison with theoretical additive dose-response curves showed additive rather than synergistic effects for both PKC inhibitors.
The assessment of endothelial function in hypertensive patients receiving acetylcholine has revealed conflicting results. Whether an impaired flow response to acetylcholine is explained solely by a diminished endothelial synthesis of nitric oxide (NO) remains unclear as yet. In the present study, we tested the hypothesis that mechanisms other than reduced NO synthesis contribute to the hypertension-associated impairment of endothelium-dependent vasodilation. Therefore, the dilatory response to endogenous and exogenous NO was measured in resistance arteries and cutaneous microvessels in the forearm circulation of 12 normotensive individuals and 17 hypertensive patients. In addition, the overall dilatory capacity was assessed by peak flow during reactive hyperemia after 3 minutes of ischemia. Forearm blood flow was quantified by venous occlusion plethysmography at rest, during application of the NO donor sodium nitroprusside, and during stimulation of endogenous NO synthesis by acetylcholine and bradykinin. Blood flow velocity in the cutaneous microvasculature was measured with laser-Doppler flowmetry in parallel. Resting forearm flow was comparable in both groups (3.1 +/- 0.2 and 3.4 +/- 0.2 mL.min-1.100mL-1 tissue), whereas blood pressure and thus peripheral vascular resistance was significantly elevated in hypertensive compared with normotensive subjects. Hyperemic peak flow was significantly blunted in hypertensive patients. Sodium nitroprusside, acetylcholine, and bradykinin increased flow in a dose-dependent manner to a comparable extent in the control group (13.3 +/- 0.8, 13.6 +/- 1.3, and 14.6 +/- 0.7 mL.min-1.100mL-1 tissue, respectively). In contrast, in hypertensive patients maximum increase in resting flow was significantly reduced (sodium nitroprusside, -36%; acetylcholine, -44%; and bradykinin, -56%). The flow response after stimulation of endogenous NO synthesis by bradykinin was significantly more blunted compared with that of exogenous NO after application of sodium nitroprusside. In the cutaneous microvasculature, bradykinin-induced increases in blood flow velocity were selectively impaired in hypertensive patients, whereas flow response to acetylcholine was preserved. Thus, we conclude that in arterial hypertension endothelium-dependent, NO-mediated dilation of resistance arteries and cutaneous microvessels of the forearm vasculature is heterogeneously impaired, depending on the type of endothelial receptor stimulated. Furthermore, the present data suggest that in hypertensive patients the impairment of NO-dependent dilation of resistance arteries is caused by at least three different mechanisms: (1) a reduced endothelial synthesis of NO due to either a disturbed signal-transduction pathway and/or a reduced activity of NO synthase, (2) an accelerated NO degradation within the vessel wall, and (3) alterations in the vessel architecture resulting in an overall reduced dilatory capacity of resistance arteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.