The hypothesis that high concentrations of IGF1 can impair embryo development was investigated in a bovine in vitro model to reflect conditions in polycystic ovary syndrome (PCOS) patients. Embryos were either cultured in the absence or presence of a physiological (100 ng/ml) or supraphysiological (1000 ng/ml) IGF1 concentration. Cell allocation, apoptosis, transcript and protein expression of selected genes involved in apoptosis, glucose metabolism and the IGF system were analysed. Supraphysiological IGF1 concentration did not improve blastocyst formation over controls, but induced higher levels of apoptosis, decreased TP53 protein expression in the trophectoderm and increased the number of cells in the inner cell mass (ICM). The increase in ICM cells corresponded with an increase in IGF1 receptor (IGF1R) protein in the ICM. A small, but significant, percentage of blastocysts displayed a hypertrophic ICM, not observed in controls and virtually absent in embryos treated with physiological concentrations of IGF1. Physiological IGF1 concentrations increased total IGF1R protein expression and upregulated IGFBP3 transcripts leading to an increase in blastocyst formation with no effects on cell number or apoptosis. In conclusion, the results support the hypothesis of detrimental effects of supraphysiological IGF1 concentrations on early pregnancy. However, our results do not support the premise that increased apoptosis associated with high levels of IGF1 is mediated via downregulation of the IGF1R as previously found in preimplantation mouse embryos. This in vitro system with the bovine preimplantation embryo reflects critical features of fertility in PCOS patients and could thus serve as a useful model for in-depth mechanistic studies.
Background Despite major improvements in pig‐to‐primate xenotransplantation, long‐term survival of xenografts is still challenging. The major histocompatibility complex (MHC) class I, which is crucial in cellular immune response, is an important xenoantigen. Abrogating MHC class I expression on xenografts might be beneficial for extending graft survival beyond current limits. Methods In this study, we employed the CRISPR/Cas9 system to target exon 2 of the porcine beta‐2‐microglobulin (B2M) gene to abrogate SLA class I expression on porcine cells. B2M‐KO cells served as donor cells for somatic cell nuclear transfer, and cloned embryos were transferred to three recipient sows. The offspring were genotyped for mutations at the B2M locus, and blood samples were analyzed via flow cytometry for the absence of SLA class I molecules. Results Pregnancies were successfully established and led to the birth of seven viable piglets. Genomic sequencing proved that all piglets carried biallelic modifications at the B2M locus leading to a frameshift, a premature stop codon, and ultimately a functional knockout. However, survival times of these animals did not exceed 4 weeks due to unexpected disease processes. Conclusion Here, we demonstrate the feasibility of generating SLA class I knockout pigs by targeting the porcine beta‐2‐microglobulin gene using the CRISPR/Cas9 system. Additionally, our findings indicate for the first time that this genetic modification might have a negative impact on the viability of the animals. These issues need to be solved to unveil the real value for xenotransplantation in the future.
The aim of this study was to describe the dynamic changes in the localization of the key nucleolar protein markers, fibrillarin, B23/nucleophosmin, C23/nucleolin, protein Nopp140, during the final stages of bovine oocyte growth. All these proteins were present in the large reticulated nucleoli of oocytes from the small-size category follicles (<1 mm). The entire nucleolus exhibited strong positivity for UBF (upstream binding factor, RNA polymerase I-specific transcription initiation factor), which displayed a dotted staining pattern. In contrast, protein p130 was diffusely distributed throughout the nucleus and excluded from nucleoli. In oocytes approaching the late period of growth (2-3-mm follicles), UBF localization shifted to the nucleolar periphery. Double staining of UBF-p130 revealed a gradual accumulation of p130 at the periphery shell around the nucleolus. In fully grown oocytes (>3-mm follicles), all studied nucleolar proteins were detected in the small compact nucleoli. The cap structure, attached to the compact nucleolus surface, was positive for UBF and PAF53 (subunit of RNA polymerase I). The UBF-positive cap showed a close structural association with p130. It is concluded that, during the process of oocyte nucleolus compaction, UBF and PAF53, proteins involved in the rDNA transcription, are segregated from fibrillarin and Nopp140, proteins essential for early steps of pre-rRNA processing. The observed changes may reflect the transition from pre-rRNA synthesis to pre-rRNA processing as an analysis of the relative abundance of the developmentally important gene transcripts confirmed. In addition, discovered structural association between UBF and p130 suggests a role for pocket proteins in ribosomal gene silencing in mammalian oocytes.
The development of a functional nucleolus accompanying the major embryonic genome activation (EGA) is considered a marker for embryo quality and viability. However, the use of this marker is limited by the lack of accurate knowledge of the biology of embryonic nucleologenesis. The objective of this study was to elucidate the role of RNA polymerase I (RPI) and total transcriptional activity, reflecting EGA, for nucleologenesis in in vivo-developed porcine embryos. Late 4-cell-stage embryos were cultured in the absence (control) or presence of actinomycin D (AD; 0.2 �g mL-1, 3 h for RPI inhibition; 2.0 �g mL-1, 3 h for total transcriptional inhibition). Late 2-cell-stage embryos were cultured to the late 4-cell stage with 0.2 �g mL-1 AD (long-term inhibition) to prevent EGA. Embryos were fixed at the late 4-cell stage and processed for RT-PCR (de novo synthesized rRNA), autoradiography (ARG, following culture with 3H-uridine for the last 20 min before fixation), TEM, FISH (probe-labeling rRNA and rDNA), silver staining of nucleolar proteins, and immunofluorescence for RPI. Control embryos displayed typical extranucleolar and nucleolar ARG labeling, fibrillo-granular nucleoli, and focal RPI localization signaling de novo rRNA synthesis in functional nucleoli, confirmed by RT-PCR. All nuclei showed large FISH clusters (rRNA and rDNA) that in 88% of the cases were co-localized with large foci of silver-stained nucleolar proteins. After RPI inhibition, only extranucleolar ARG labeling was detected and, instead of fibrillo-granular nucleoli, a segregated dense-fibrillar component and a granular component, but no fibrillar centers, were observed. RPI was dispersed in all nuclei, the number of nuclei presenting large FISH clusters decreased to 40%, and only 42% of nuclei showed nucleolar proteins localized to large foci. After total transcriptional inhibition and long-term inhibition, the nuclei did not display any ARG labeling and presented inactive nucleolus precursor bodies indicating lack of rRNA (RT-PCR) and total RNA synthesis. However, 40% of the nuclei in both groups presented large FISH clusters of rRNA. This rRNA is considered as partially processed residues of maternally inherited molecules, and their clustering is most likely independent of EGA. Inhibition of transcriptional activity at the time of EGA caused the dispersion of RPI (de novo synthesized) but did not influence the localization of silver-stained nucleolar proteins to large foci (41%). On the other hand, EGA inhibition caused the lack of RPI labeling and hampered the localization of nucleolar proteins to foci. Differences between these 2 groups could be due to the activation of RNA polymerase II before the 3-h AD treatment. In conclusion, RPI transcription and de novo protein synthesis are required for formation of functional nucleoli. However, the clustering of maternally inherited nucleolar transcripts is independent on transcriptional activity at the time of EGA. Failure in constituent RNA polymerase activation during EGA leads to pattern-specific changes in nucleologenesis, which may serve as a marker for early embryo quality.
The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p < 0.05) and cell numbers per blastocyst (HMC vs. CNT: 31 vs. 23 on D5 and 42 vs. 18 on D6, p < 0.05) compared to CNT embryos. With regard to histone acetylation and gene expression, CNT and HMC derived cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.