Differential polarized phase fluorometry has been used to investigate the depolarizing rotations of 1,6-diphenyl-1,3,5-hexatriene (DPH) in isotropic solvents and in lipid bilayers. For DPH dissolved in isotropic solvents, there is a precise agreement between the observed and predicted values for maximum differential tangents, indicating that in these media DPH is a free isotropic rotator. In lipid bilayers the tangent defects (i.e., the differences between the calculated and the observed maximum differential tangents) are too large to be explained by anisotropy in the depolarizing rotations but are accounted for by hindered isotropic torsional motions for the fluorophore [Weber, G (1978) Acta Phys. Pol A 54, 173]. This theory describes the depolarizing rotations of the fluorophore by its rotational rate R (in radians/second) and the limiting fluorescence anisotropy (r) at times long compared with the fluorescence lifetime. Through the combined use of both steady-state anisotropy measurements and differential phase measurements, we have demonstrated that one may obtain unique solutions for both R and r. For DPH embedded in vesicles prepared from dimyristoyl-, dipalmitoyl-, and distearoylphosphatidylcholines, the depolarizing motions are highly hindered at temperatures below the transition temperature (Tc) but are unhindered above Tc. The apparent rotational rates of the probe do not change significantly at Tc. These data suggest that the changes observed in the steady-state anisotropy near Tc derive primarily from changes in the degree to which the probe's rotations are hindered, and only to a small extent from changes in rotational rate. For DPH embedded in bilayers that contained 25 mol % cholesterol, no clear transition occurred and the rotations appeared to be hindered at all temperatures. The rotational motions of DPH embedded in dioleolyphosphatidylcholine were found to be far less hindered, but the rotational rates were similar to those obtained in the saturated phosphatidylcholines. Finally, the data show that in an anisotropic environment, such as that of a lipid bilayer, steady-state fluorescence anisotropy measurements alone cannot yield quantitatively meaningful rotational rates. Extrapolation of steady-state aniosotropy data to the quantitation of membrane viscosity is therefore difficult, if not invalid; however, qualitative comparisons can be useful.
We examined the dynamic properties of the lipid-water interface region of model membranes, on the nanosecond time scale, by using the fluorescent probe 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS). In particular, we examined the steady-state emission spectra of TNS as its average lifetime was decreased by oxygen quenching. Under these quenching conditions the centers of gravity (Vcg) of the emission spectra shift ot shorter wavelengths. The lifetime dependence of these shifts reveals the time dependence of membrane relaxation around the excited-state dipole moment of TNS. The lipids investigated include dioleoyl-, dimyristoyl-, and dipalmitoyl-L-alpha-phosphatidylcholines, bilayers containing cholesterol, and an ether analogue of dipalmitoyl-L-alpha-phosphatidylcholine. For these lipids, the spectral relaxation times and the temperature dependence of the relaxations are similar in magnitude. Most relaxation times fall in the range of 0.6-6 ns, and except for the ether analogue, the inactivation energies for spectral relaxation are 10 plus or minus 2 kcal/mol. The average energy loss during spectral relaxation was 1000 cm(-1). However, for the saturated phosphatidylcholines at temperatures below their transition temperatures, smaller relaxation losses were observed (approximately 600 cm(-1)). We attribute these smaller losses to ordering of the polar head groups around the ground-state dipole moment of TNS. Overall, these results indicate that the dynamic properties of the lipid-water interface region are similar among the phosphatidylcholines and depend only slightly on the chemical composition and phase state of the acyl side chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.