Abstract. The paper deals with the problems of cavitation in water flow in the nozzle. The area of research is divided into two directions (experimental and numerical research). During the experimental research the equipment with the nozzle is under the measurement and basic physical quantities such as pressure and volume flow rate are recorded. In the following phase measuring of noise which is generated during flow through the nozzle in the area of cavitation is measured at various operating conditions of the pump. In the second part the appropriate multiphase mathematical model including the consideration of cavitation is defined. Boundary conditions for numerical simulation are defined on the basis of experimental measurements. Undissolved air in the flow is taken into account to obtain pressure distribution in accordance to measured one. Results of the numerical simulation are presented by means of basic current quantities such as pressure, velocity and volume fractions of each phase. The conclusions obtained from experimental research of cavitation were applied to modify the multiphase mathematical model.
The paper concerns experimental and numerical investigations focused on the cloud cavitation phenomenon over a hydrofoil. The results of flow visualization by means of a high-speed camera are presented. The cavitation cycles including vapour structures occurrence, development and collapse were recorded and described. Within the numerical investigation, transient calculations of cavitating flow were performed. OpenFOAM software was used. To model mass transfer between phases, the Kunz cavitation model was chosen. Turbulences were modelled by means of k-ω SST model. The vapour areas appearance, their shapes and changes in time were described and compared with experimental results. The characteristic features of cavitating flow were observed, however further adjustment of the cavitation model was advised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.