We present new models for low-mass stars down to the hydrogen-burning limit that consistently couple atmosphere and interior structures, thereby superseding the widely used BCAH98 models. The new models include updated molecular linelists and solar abundances, as well as atmospheric convection parameters calibrated on 2D/3D radiative hydrodynamics simulations. Comparison of these models with observations in various colour-magnitude diagrams for various ages shows significant improvement over previous generations of models. The new models can solve flaws that are present in the previous ones, such as the prediction of optical colours that are too blue compared to M dwarf observations. They can also reproduce the four components of the young quadruple system LkCa 3 in a colour-magnitude diagram with one single isochrone, in contrast to any presently existing model. In this paper we also highlight the need for consistency when comparing models and observations, with the necessity of using evolutionary models and colours based on the same atmospheric structures.
Aims. We present a new library of high-resolution synthetic spectra based on the stellar atmosphere code PHOENIX that can be used for a wide range of applications of spectral analysis and stellar parameter synthesis. Methods. The spherical mode of PHOENIX was used to create model atmospheres and to derive detailed synthetic stellar spectra from them. We present a new self-consistent way of describing micro-turbulence for our model atmospheres. Results. The synthetic spectra cover the wavelength range from 500 Å to 5.5 μm with resolutions of R = 500 000 in the optical and near IR, R = 100 000 in the IR and Δλ = 0.1 Å in the UV. The parameter space covers 2300 K ≤ T eff ≤ 12 000 K, 0.0 ≤ log g ≤ +6.0,The library is a work in progress and we expect to extend it up to T eff = 25 000 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.