The electrical double layer at the interface between two immiscible electrolyte solutions (ITIES) has been studied by the fast-galvanostatic-pulse method for the system consisting of aqueous NaBr and a solution of tetrabutylammonium tetraphenylborate in nitrobenzene. The double-layer capacity has been evaluated as a function of the potential difference across the interface. The modified Verwey-Niessen model, in which a layer of oriented solvent molecules (the inner layer) separates two space-charge regions (the diffuse double layer), seems to provide a reasonable framework to interpret the experimental data, assuming (i) that the approximations to the Poisson-Boltzmann equation by Gouy and Chapman are removed and (ii) that the boundary between the space-charge region and the inner layer is considered to be diffuse rather than sharp. The use of the tetrabutylammonium cation as the reference ion in voltammetric studies of the water/nitrobenzene interface is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.