The potential energy curves of the molecule LiCs have been calculated for the 55 low-lying electronic states in the Ω-representation. Using an ab initio method the calculation is based on a nonempirical pseudo-potential in the interval 3.0ao≤ R ≤ 40.0ao of the internuclear distance. The spin–orbit effects have been taken into account through a semi-empirical spin–orbit pseudo-potential added to the electrostatic Hamiltonian with Gaussian basis sets for both atoms. The spectroscopic constants have been calculated for 39 states and the components of the spin–orbit splitting have been identified for the states (2, 5)3Π and (1)3Δ. The comparison of the present results with those available in literature shows good agreement, while the other results, to the best of our knowledge, are given here for the first time.
We investigate an orderly study of the adiabatic potential energy curves for 29 and 30 low-lying 2s+1Λ+/− electronic states of the molecules MgLi and MgNa, respectively. The calculation has been done by using the complete active space self-consistent field followed by multi-reference configuration interaction with Davidson correction. For the investigated electronic states, the static and transition dipole moment curves are calculated along with the Einstein coefficients, the emission oscillator strength, the spontaneous radiative lifetime, the line strength, the classical radiative decay rate of the single-electron oscillator, the spectroscopic constants (Te, ωe, ωexe, Be, Re), and the equilibrium dissociation energy De. By means of the canonical functions approach, the ro-vibrational constants Ev, Bv, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated for the considered electronic states up to the vibrational level v = 79. The Franck–Condon factors have been calculated and plotted for the transition between the low-lying electronic states of the two considered molecules. A good agreement is revealed between our calculated values and those available in the literature. Fifty new electronic states are investigated in the present work for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.