The aim of this study was to investigate whether endogenous restrictions in oxygen supply are limiting for storage metabolism in developing oilseed rape (Brassica napus) seeds. Siliques were studied 30 d after flowering, when rapid lipid accumulation is occurring in the seeds. (a) By using microsensors, oxygen concentrations were measured within seeds and in the silique space between seeds. At ambient external oxygen (21% [v/v]) in the light, oxygen fell to 17% (v/v) between and 0.8% (v/v) within seeds. A step-wise reduction of the external oxygen concentration led within 2 h to a further decrease of internal oxygen concentrations, and a step-wise increase of the external oxygen concentration up to 60% (v/v) resulted in an increase in internal oxygen that rose to 30% (v/v) between and 8% (v/v) within seeds. (b) The increase in oxygen levels in the seeds was accompanied by a progressive increase in the levels of ATP, UTP, and the ATP to ADP and UTP to UDP ratios over the entire range from 0% to 60% (v/v) external oxygen. (c) To investigate metabolic fluxes in planta, 14 C-sucrose was injected into seeds, which remained otherwise intact within their siliques. The increase in oxygen in the seeds was accompanied by a progressive increase in the rate of lipid (including triacylglycerol), protein and cell wall synthesis, and an increase in glycolytic flux over a range from sub-to superambient oxygen concentrations. In contrast to lipid synthesis, starch synthesis was not significantly increased at superambient oxygen levels. The levels of fermentation products such as lactate and glycerol-3P increased only at very low (0%-4% [v/v]) external oxygen concentrations. (d) When 14 C-acetate or 14 C-acetyl-coenzyme A (CoA) was injected into seeds, label incorporation into triacylglycerol progressively increased over the whole range of external oxygen concentrations from 0% to 60% (v/v). (e) Stimulation of lipid synthesis was accompanied by an increase in sugar levels and a decrease in the levels of hexose-phosphates and acetyl-CoA, indicating sucrose unloading and the use of acetyl-CoA as possible regulatory sites. (f) Increased lipid synthesis was also accompanied by an increase in the maximal activities of invertase and diacylglycerol acyltransferase. (g) The developmental shift from starch to lipid storage between 15 and 45 d after flowering was accompanied by an increase in the seed energy state. (h) The results show that at ambient oxygen levels, the oxygen supply is strongly limiting for energy metabolism and biosynthetic fluxes in growing rape seeds, affecting lipid synthesis more strongly than starch synthesis. The underlying mechanisms and implications for strategies to increase yield and storage product composition in oilseed crops are discussed.Plants synthesize reduced carbon compounds from inorganic matter during photosynthesis in leaves, which are then exported to reproductive organs to be used for storage and growth. In developing seeds, Suc is converted to oil, protein, and starch, which are laid down as stor...
The regulation of DNA double-strand break (DSB) repair by phosphorylation-dependent signaling pathways is crucial for the maintenance of genome stability; however, remarkably little is known about the molecular mechanisms by which phosphorylation controls DSB repair. Here, we show that PIN1, a phosphorylation-specific prolyl isomerase, interacts with key DSB repair factors and affects the relative contributions of homologous recombination (HR) and nonhomologous end-joining (NHEJ) to DSB repair. We find that PIN1-deficient cells display reduced NHEJ due to increased DNA end resection, whereas resection and HR are compromised in PIN1-overexpressing cells. Moreover, we identify CtIP as a substrate of PIN1 and show that DSBs become hyperresected in cells expressing a CtIP mutant refractory to PIN1 recognition. Mechanistically, we provide evidence that PIN1 impinges on CtIP stability by promoting its ubiquitylation and subsequent proteasomal degradation. Collectively, these data uncover PIN1-mediated isomerization as a regulatory mechanism coordinating DSB repair.
The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain, or phosphorylation site causes excessive binding of RAD51 to CFS loci and impairs CFS expression. This leads to defective chromosome segregation and accumulation of CFS-associated DNA damage in G1 cells. Biochemically, RECQ5 alleviates the inhibitory effect of RAD51 on 3'-flap DNA cleavage by MUS81-EME1 through its RAD51 filament disruption activity. These data suggest that RECQ5 removes RAD51 filaments stabilizing stalled replication forks at CFSs and hence facilitates CFS cleavage by MUS81-EME1.
Urban et al. show that RECQ5 DNA helicase promotes RAD18-dependent PCNA ubiquitination and the processing of replication intermediates upon collisions between replication and transcription complexes.
Nonsymbiotic hemoglobins are ubiquitously expressed in plants and divided into two different classes based on gene expression pattern and oxygen-binding properties. Most of the published research has been on the function of class 1 hemoglobins. To investigate the role of class 2 hemoglobins, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated overexpressing Arabidopsis hemoglobin-2 (AHb2) under the control of a seed-specific promoter. Overexpression of AHb2 led to a 40% increase in the total fatty acid content of developing and mature seeds in three subsequent generations. This was mainly due to an increase in the polyunsaturated C18:2 (v-6) linoleic and C18:3 (v-3) a-linolenic acids. Moreover, AHb2 overexpression led to an increase in the C18:2/C18:1 and C18:3/C18:2 ratios as well as in the C18:3 content in mol % of total fatty acids and in the unsaturation/saturation index of total seed lipids. The increase in fatty acid content was mainly due to a stimulation of the rate of triacylglycerol synthesis, which was attributable to a 3-fold higher energy state and a 2-fold higher sucrose content of the seeds. Under low external oxygen, AHb2 overexpression maintained an up to 5-fold higher energy state and prevented fermentation. This is consistent with AHb2 overexpression results in improved oxygen availability within developing seeds. In contrast to this, overexpression of class 1 hemoglobin did not lead to any significant increase in the metabolic performance of the seeds. These results provide evidence for a specific function of class 2 hemoglobin in seed oil production and in promoting the accumulation of polyunsaturated fatty acids by facilitating oxygen supply in developing seeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.