Highlights:• decorrelating autonomous STN activity was downregulated in both toxin and genetic models of PD• elevation of D2-striatal projection neuron transmission was sufficient for downregulation• downregulation was dependent on activation of STN NMDA receptors and KATP channels• chemogenetic restoration of autonomous spiking reduced synaptic patterning of STN neurons and PD motor dysfunction
eTOC:Excessive synaptic synchronization of STN activity is linked to the symptomatic expression of PD. McIver and colleagues describe the cellular and circuit mechanisms responsible for the loss of decorrelating autonomous STN activity in PD models and demonstrate that chemogenetic rescue of autonomous spiking reduces synaptically patterned STN activity and ameliorates Parkinsonian motor dysfunction.All rights reserved. No reuse allowed without permission.(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint . http://dx.doi.org/10.1101/385443 doi: bioRxiv preprint first posted online Aug. 16, 2018; SUMMARY Excessive, synaptically-driven synchronization of subthalamic nucleus (STN) neurons is widely thought to contribute to akinesia, bradykinesia, and rigidity in Parkinson's disease (PD). Electrophysiological, optogenetic, chemogenetic, genetic, 2-photon imaging, and pharmacological approaches revealed that the autonomous activity of STN neurons, which opposes synaptic synchronization, was downregulated in both toxin and genetic mouse models of PD. Loss of autonomous spiking was due to increased transmission of D2-striatal projection neurons, leading in the STN to elevated activation of NMDA receptors and generation of reactive oxygen species that promoted KATP channel opening. Chemogenetic restoration of autonomous firing in STN neurons reduced synaptic patterning and ameliorated Parkinsonian motor dysfunction, arguing that elevating intrinsic STN activity is an effective therapeutic intervention in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.