Evidence indicates that failure of nuclear transfer (NT) embryos to develop normally can be attributed, at least partially, to the use of differentiated cells as the donor karyoplast. Blastocyst production and development to term of cloned embryos has been hypothesized to differ between population doublings of the same cell line as a consequence of changes in the levels of DNA methyltransferase 1 (DNMT1) and methylated DNA during in vitro culture. The objective of this study was to determine embryo production, developmental potential, and gene expression patterns of prehatched and posthatched embryos generated using donor cells with different levels of DNMT1 transcript. Day 7 embryos generated using donor cells with high and low levels of DNMT1 mRNA were transferred to recipient cows. Embryos recovered on Day 13 were morphologically characterized or used for gene expression analysis of DNMT, INFT, and MHC1. A higher proportion of 8- to 16-cell embryos developed to the blastocyst stage when cells with low levels of DNMT1 mRNA were used as donor nuclei. Day 13 NT embryos generated using donor cells with decreased levels of DNMT1 mRNA and capable of developing beyond the 8- to 16-cell stage produced a larger number of apparently developing embryos, larger conceptuses, and a higher expression of DNMT3A transcript than NT embryos reconstructed using cells with high levels of DNMT1 mRNA. However, abnormal gene expression of DNMT, INFT, and MHC1 was noted in the majority of cloned embryos, indicating inefficient nuclear reprogramming and retarded embryo development. Furthermore, aberrant DNMT1 expression may partially contribute to the inefficient nuclear reprogramming observed in cloned embryos.
An asymmetric distribution of the sexes within the left and right uterine horns has been described in multiple species. A series of experiments were conducted to evaluate the sex ratio (% male) of calves gestated in the left and right uterine horns, as well as the sex ratio of embryos originating from the left and right ovaries of cattle. The sex ratio of calves gestated in the right uterine horn of naturally mated cows was significantly higher compared with the sex ratio of calves gestated in the left uterine horn. In addition, the sex ratio of the left and right uterine horns differed significantly from parity. The sex ratio of embryo transfer calves born following transfer to the left and right uterine horns was not significantly different. Additionally, the proportion of male embryos collected from the right uterine horns was significantly greater than from the left uterine horns of superovulated cows. The sex ratio of embryos collected from the left and right uterine horns of unilaterally ovariectomized cows was not significantly different. However, more female than male embryos were produced when left ovary oocytes fertilized in vitro. In conclusion, the results of these experiments demonstrate that a significantly greater proportion of males are gestated in the right uterine horn of cattle and a greater proportion of females in the left. Additionally, the data indicate that sex-specific selection pressure may be applied to embryos by ovarian factors rather than by the uterine environment.
Numerous studies have reported aberrant gene expression levels attributed to suboptimal in vitro culture conditions. This study investigated the effects of different culture systems and protein sources on the developmental competence of in vitro production (IVP) embryos measured by cleavage and blastocyst rates, cell number, and relative abundance of POU5F1 (OCT4), nanog, GJA1 (connexin 43), and SLC2A1 (GLUT1) transcripts when compared to in vivo embryos. Experiment 1 compared IVP embryos cultured in either synthetic oviductal fluid (SOFaa) or potassium simplex optimized medium supplemented with amino acids (KSOMaa). Experiment 2 compared the same two culture systems with and without the addition of calf serum (CS). Results from both experiments indicated that despite similar developmental rates, significant differences were observed at the mRNA level. In Experiment 1, OCT4 was the only transcript to have a mean abundance level significantly higher in KSOMaa blastocysts when compared with both SOFaa and in vivo embryos. The same pattern of upregulation of OCT4 mRNA was noted in Experiment 2. There were no significant alterations of the ICM specific transcript nanog in either experiment. In contrast to reports by others, connexin 43 mRNA was not expressed at detectable levels in in vivo embryos analyzed in our studies. Blastocysts cultured in SOFaa with CS or KSOMaa had a significant upregulation of GLUT1 mRNA when compared with other treatments and in vivo embryos. Until differences between IVP and in vivo embryos are minimized, aberrations in IVP will continue to arise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.