High sodium intake negatively affects consumer health, thus there is active interest in lowering sodium levels in dairy foods. Cheddar and low-moisture, part-skim Mozzarella cheeses were made with total salt levels of 0.7, 1.0, 1.25, 1.35, and 1.8% (wt/wt) in triplicate, thus reducing sodium by 25 to 60%. Multiple manufacturing protocols for salt reduction were used to produce cheeses with similar postpress moisture and pH, independent of the final salt levels in cheese, in order to study the role of salt in cheese acceptability. Cheese flavor was evaluated by a descriptive taste panel on a 15-point intensity scale. Consumer acceptance was evaluated by a consumer panel on a 9-point hedonic scale. Taste panels conducted with cubed Cheddar cheese (at 3 and 6mo) and cold shredded Mozzarella cheese (at 3wk) showed that consumer liking for cheese was low at 0.7 and 0.9% salt, but all cheeses containing higher salt levels (1.25, 1.35, and 1.8% salt) were comparably preferred. The cheeses had acceptable liking scores (≥6) when served as quesadilla or pizza toppings, and consumers were able to differentiate cheeses at alternate salt levels; for example, 1.8 and 1.5% salt cheeses scored similarly, as did cheeses with 1.5% and 1.35% salt, but 1.35% salt cheese scored lower than and was discernible from 1.8% salt cheese. Descriptive panelists perceived salty, sour, umami, bitter, brothy, lactone/fatty acid, and sulfur attributes as different across Mozzarella cheeses, with the perception of each significantly increasing along with salt level. Salty and buttery attributes were perceived more with increasing salt levels of Cheddar cheese by the descriptive panel at 3mo, whereas bitter, brothy, and umami attributes were perceived less at the higher salt levels. However, this trend reversed at 6mo, when perception of salty, sour, bitter, buttery, lactone/fatty acid, and umami attributes increased with salt level. We conclude that consumers can distinguish even a 30% salt reduction and a gradually phased sodium reduction is needed to improve acceptability of lower sodium cheeses.
Commercial fresh Mozzarella cheese is made by direct acidification and is stored dry or in water without salt addition. The cheese has a shelf life of 6 wk, but usually develops an off-flavor and loses textural integrity by 4 wk, potentially due to the lack of salt and high moisture that allow the outgrowth of undesirable bacteria. To understand how microbial incidence affects cheese quality and how incident pathogen-related bacteria are limited by salt level during refrigerated storage, we made fresh Mozzarella cheese with high (2%) and low (0.5%) salt. The high-salt cheese was packaged and stored dry. The low-salt cheese was packaged and stored either dry or in 0.5% salt brine. One portion of cheeses was evaluated for surviving incident microbes by aerobic plate counts, coliform counts, and psychrophilic bacterial counts, of which coliforms and psychrophiles were not detected over 9 wk. Aerobic plate counts remained at 100 to 300 cfu/g up to 2 wk but increased by 1,000- to 10,000-fold between 4 and 6 wk at all salt levels and storage conditions. Other portions of cheeses were inoculated with either Escherichia coli or Enterococcus faecalis, both of which increased by 100-fold over 90 d of storage. Interestingly, E. coli added to the cheese brine first grew in the brine by 100-fold before attaching to the cheese, whereas Ent. faecalis attached to the cheese within 24h and grew only on the cheese. We conclude that incident bacteria, even from similar environments, may attach to cheese curd and survive differently in fresh Mozzarella cheese than in brine. Overall, 2% salt was insufficient to control bacterial growth, and slow-growing, cold- and salt-tolerant bacteria may survive and spoil fresh Mozzarella cheese.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.