Introduction of adenosine 5¢-triphosphate (ATP) into the endolymphatic compartment of the guinea-pig cochlea decreases the endocochlear potential (EP). To determine if this is due to an ATP-induced change in compartment resistance, the cochlear partition resistance (CoPR) was measured using constant current injections into scala media before, during, and after microinjection of ATP into the same compartment. The CoPR (mean = 3.13 ± 0.13 kX) decreased with ATP in a dose-dependent manner (25.1 ± 3.0% decrease in relation to baseline values) and this was linearly correlated (R 2 = 0.91) to the magnitude of the ATP-induced decline in EP (41.6 ± 7.0% decline in relation to the baseline). Pyridoxalphosphate-6-azophenyl-2¢,4¢-disulfonic acid (PPADS, a P2X receptor antagonist) injected prior to ATP application blocked this ATP-induced reduction in EP and CoPR. This indicates that ATP-gated ion channels (P2X receptors) provide a latent shunt capable of regulating the majority of the electrical potential across the luminal surface of the sensory hair cells, which is necessary for sound transduction. The results suggest a novel sound transduction regulatory mechanism, which, via extracellular ATP, has the capability of adjusting hearing sensitivity.
Previous studies have revealed putative vesicular stores of adenosine triphosphate (ATP) in the marginal cells of the cochlear stria vascularis which may serve as a source of ATP for purinergic signalling. This study aimed to provide further evidence of ATP storage in the cochlea and to see whether ATP levels in the endolymph are affected by noise and hypoxia. Tissues from the lateral wall and organ of Corti of the guinea-pig cochlea were fractionated to obtain vesicular (VF) and mitochondrial (MF) fractions. Free and total ATP were then measured by the luciferase-luciferin reaction from which membrane-bound vesicular ATP was calculated. In the lateral wall, the VF contained 2.02+/-0.04 nmol ATP/mg protein (n = 5), significantly greater (p < 0.001; paired Student's t-test) than the concentration of ATP in the MF (0.36+/-0.05). In the organ of Corti, the VF contained 0.69+/-0.08 nmol ATP/mg protein (n = 4), significantly smaller than the amount in the VF of the lateral wall tissues (p < 0.001; non-paired Student's t-test). Small amounts of fumarase. an enzyme of the mitochondrial matrix, in the VF, excluded the possibility of mitochondrial ATP contamination. To investigate the effect of hypoxia and noise on the ATP concentrations in the endolymph, fluid samples were collected from the first (basal) cochlear turn of anaesthetized guinea-pigs. As a result of hypoxia (15 min, 13% F1O2), ATP concentrations (nM, mean +/- SEM) increased from 6.2+/-2.3 to 9.3+/-4.5 (n = 4), but the difference was not statistically significant. As a result of noise (15 min, 10 kHz, 110 dB SPL. broad band), the ATP levels increased significantly from 7.4+/-1.2 to 16.0+/-1.8 (p = 0.01; Student's t-test: n = 4). This study has demonstrated the presence of a vesicular store of ATP in the stria vascularis of the cochlea and described an increase in the ATP levels in the endolymph during noise exposure. The findings suggest that ATP is actively secreted from the vesicular store under conditions of metabolic stress. The presence of ATP under basal conditions supports a role for ATP in the sound transduction process during normal function.
Extracellular adenosine triphosphate (ATP) has profound effects on the cochlea, including an effect on the regulation of the endocochlear potential (EP). Noise-induced release of ATP into the endolymph activates a shunt conductance mediated by P2X 2 receptors in tissues lining the endolymphatic compartment, which reduces the EP and, consequentially, hearing sensitivity. This may be a mechanism of adaptation or protection from high sound levels. As inaction of such a process could contribute to hearing loss, this study examined whether the action of ATP on EP changes with age and noise exposure in the mouse. The EP and the endolymphatic compartment resistance (CoPR) were measured in mice (CBA/CaJ) aged between 3 and 15 months. The EP and CoPR declined slightly with age with an associated small, but significant, reduction in auditory brainstem response thresholds. ATP (100-1,000 μM) microinjected into the endolymphatic compartment caused a dosedependent decline in EP correlated to a similar decrease in CoPR. This was blocked by pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate, consistent with a P2X 2 receptormediated shunt conductance. There was no substantial difference in the ATP response with age. Noise exposure (octave-band noise 80-100 decibels sound pressure level (dBSPL), 48 h) in young animals induced an upregulation of the P2X 2 receptor expression in the organ of Corti and spiral limbus, most noticeably with the 90-dB exposure. This did not occur in the aged animals except following exposure at 90 dBSPL. The EP response to ATP was muted in the noiseexposed aged animals except following the 90-dB exposure. These findings provide some evidence that the adaptive response of the cochlea to noise may be reduced in older animals, and it is speculated that this could increase their susceptibility to noise-induced injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.