Temperature data to depths of a few hundred meters were obtained from 29 wells in northeastern Arizona; in the region surrounding the San Francisco Volcanic Field, 8 in the Black Mesa area, and 9 in the south-central Colorado Plateau which includes the White Mountains. Although there was evidence for local hydrologic disturbances in many temperature profiles, most wells provided an estimate of the conductive thermal gradient at the site. A few thermal conductivities were measured and were combined with published regional averages for the north-central part of the Colorado Plateau to produce crude estimates of regional heat flux. None of the wells was accessible below the regional aquifers. To these depths, heat flow in the area of the San Francisco Volcanic Field appears to be controlled primarily by regional lateral water movement having a significant downward vertical component of velocity. The mean heat flow of 27 ± 5 mWm 2 is only a third to a quarter of what we would expect in this tectonic setting. The heat that is being carried laterally and downward probably is being discharged at low enthalpy and low elevation in springs and streams of the Colorado Plateau and Mogollon Rim. In the vicinity of Black Mesa, heat-flow averages about 60 mWm 2 , characteristic of the "cool interior" of the Colorado Plateau. North of the White Mountain Volcanic Field, the average heat flow is about 95 mWm 2 .-3-"SAN FRANCISCO vV"" SSCR %
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.