Photonic systems and technologies traditionally relegated to table-top experiments are poised to make the leap from the laboratory to real-world applications through integration, leading to a dramatic decrease in size, weight, power, and cost 1 . In particular, photonic integrated ultra-narrow linewidth lasers are a critical component for applications including coherent communications 2 , metrology 3-5 , microwave photonics 6 , spectroscopy 7 , and optical synthesizers 1 . Stimulated Brillouin scattering (SBS) lasers, through their unique linewidth narrowing properties 8 , are an ideal candidate to create highly-coherent waveguide integrated sources. In particular, cascaded-order Brillouin lasers show promise for multi-line emission 14 , low-noise microwave generation 6 and other optical comb applications. To date, compact, very-low linewidth SBS lasers have been demonstrated using discrete, tapered-fiber coupled chip-scale silica 9,10 or CaF2 11 microresonators. Photonic integration of these lasers can dramatically improve their stability to environmental and mechanical disturbances, simplify their packaging, and lower cost through wafer-scale photonics foundry processes. While single-order silicon 12 and cascade-order chalcogenide 13 waveguide SBS lasers have been demonstrated, these lasers produce modest emission linewidths of 10-100 kHz and are not compatible with waferscale photonics foundry processes. Here, we report the first demonstration of a sub-Hz (~0.7 Hz) fundamental linewidth photonic-integrated Brillouin cascaded-order laser, representing a significant advancement in the state-of-the-art in integrated waveguide SBS lasers. This laser is comprised of a bus-ring resonator fabricated using an ultra-low loss (< 0.5 dB/m) Si3N4 waveguide platform. To achieve a sub-Hz linewidth, we leverage a high-Q, large mode volume, single polarization mode resonator that produces photon generated acoustic waves without phonon guiding. This approach greatly relaxes phase matching conditions between polarization modes and optical and acoustic modes. By using a theory for cascaded-order Brillouin laser dynamics 14 , we determine the fundamental emission linewidth of the first Stokes order by measuring the beat-note linewidth between and the relative powers of the first and third Stokes orders. Extension of these high performance lasers to the visible and near-IR wavebands is possible due to the low optical loss of silicon nitride waveguides from 405 nm to 2350 nm 15 , paving the way to photonic-integrated sub-Hz lasers for visible-light applications including atomic clocks and precision spectroscopy.
We characterize an approach to make ultra-low-loss waveguides using stable and reproducible stoichiometric Si3N4 deposited with low-pressure chemical vapor deposition. Using a high-aspect-ratio core geometry, record low losses of 8-9 dB/m for a 0.5 mm bend radius down to 3 dB/m for a 2 mm bend radius are measured with ring resonator and optical frequency domain reflectometry techniques. From a waveguide loss model that agrees well with experimental results, we project that 0.1 dB/m total propagation loss is achievable at a 7 mm bend radius with this approach.
We demonstrate a wafer-bonded silica-on-silicon planar waveguide platform with record low total propagation loss of (0.045 ± 0.04) dB/m near the free space wavelength of 1580 nm. Using coherent optical frequency domain reflectometry, we characterize the group index, fiber-to-chip coupling loss, critical bend radius, and propagation loss of these waveguides.
The silicon nitride (Si 3 N 4 ) planar waveguide platform has enabled a broad class of low-loss planar-integrated devices and chip-scale solutions that benefit from transparency over a wide wavelength range (400-2350 nm) and fabrication using wafer-scale processes. As a complimentary platform to silicon-on-insulator (SOI) and III-V photonics, Si 3 N 4 waveguide technology opens up a new generation of systemon-chip applications not achievable with the other platforms alone. The availability of low-loss waveguides (<1 dB/m) that can handle high optical power can be engineered for linear and nonlinear optical functions, and that support a variety of passive and active building blocks opens new avenues for systemon-chip implementations. As signal bandwidth and data rates continue to increase, the optical circuit functions and complexity made possible with Si 3 N 4 has expanded the practical application of optical signal processing functions that can reduce energy consumption, size and cost over today's digital electronic solutions. Researchers have been able to push the performance photonic-integrated components beyond other integrated platforms, including ultrahigh Q resonators, optical filters, highly coherent lasers, optical signal processing circuits, nonlinear optical devices, frequency comb generators, and biophotonic system-on-chip. This review paper covers the Manuscript
payload with the 1.244-Gb/s label was demonstrated. The results showed small power penalty as much as 0.2 dB in payload transmission, which arises from crosstalk with the label, and the CS-SH-SCM labeling technique showed increased capability for multiple-span transmission of the payload with successive label swapping. ACKNOWLEDGMENTThis work was partially supported by the Korean Science and Engineering Foundation (KOSEF) through the OIRC project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.