Genetic variation within and between Australian Merino subpopulations was estimated from a large breeding nucleus in which up to 8500 progeny from over 300 sires were recorded at eight sites across Australia. Subpopulations were defined as genetic groups using the Westell–Quaas model in which base animals with unknown pedigree were allocated to groups based on their flock of origin if there were sufficient ‘expressions’ for the flock, or to one of four broad sheep-type groups otherwise (Ultra/Superfine, Fine/Fine-medium, Medium/Strong, or unknown). Linear models including genetic groups and additive genetic breeding values as random effects were used to estimate variance components for 12 traits: yearling greasy and clean fleece weight (ygfw and ycfw), yearling mean and coefficient of variation of fibre diameter (yfd and ydcv), yearling staple length and staple strength (ysl and yss), yearling fibre curvature (ycuv), yearling body wrinkle (ybdwr), post-weaning weight (pwt), muscle (pemd) and fat depth (pfat), and post-weaning worm egg count (pwec). For the majority of traits, the genetic group variance ranged from approximately equal to two times larger than the additive genetic (within group) variance. The exceptions were pfat and ydcv where the genetic group to additive variance ratios were 0.58 and 0.22, respectively, and pwec and yss where there was no variation between genetic groups. Genetic group correlations between traits were generally the same sign as corresponding additive genetic correlations, but were stronger in magnitude (either more positive or more negative). These large differences between genetic groups have long been exploited by Merino ram breeders, to the extent that the animals in the present study represent a significantly admixed population of the founding groups. The relativities observed between genetic group and additive genetic variance components in this study can be used to refine the models used to estimate breeding values for the Australian Merino industry.
The Australian Merino is the predominant genetic resource for both the prime lamb and sheep meat industries of Australia. There are very few studies that provide good information on the relationships between wool and non-wool traits. The objective of this paper was to describe genetic relationships within bodyweight traits and between bodyweight and other traits recorded in Merino sheep. The genetic correlation between bodyweight, fleece weight and fibre diameter was positive (0.1 to 0.2). While fibre diameter coefficient of variation, staple length, staple strength, mean fibre curvature, and faecal egg count were not correlated with bodyweight. Scrotal circumference (0.4), number of lambs born (0.1), and number of lambs weaned (0.1) were positively correlated with bodyweight. Results indicate that selection for an increase in bodyweight will have a positive effect on eye muscle depth, fleece weight, and reproduction traits, while selection for an increase in bodyweight will have a negative effect on fibre diameter and fibre diameter coefficient of variation.
ABSTRACT:Genetic correlations between 29 wool production and quality traits and live weight and ultrasound fat depth (FAT) and eye muscle depth (EMD) traits were estimated from the Information Nucleus (IN). The IN comprised 8 genetically linked flocks managed across a range of Australian sheep production environments. The data were from a maximum of 9,135 progeny born over 5 yr from 184 Merino sires and 4,614 Merino dams. The wool traits included records for yearling and adult fleece weight, fiber diameter (FD), staple length (SL), fiber diameter CV (FDCV), scoured color, and visual scores for breech and body wrinkle. We found high heritability for the major yearling wool production traits and some wool quality traits, whereas other wool quality traits, wool color, and visual traits were moderately heritable. The estimates of heritability for live weight generally increased with age as maternal effects declined. Estimates of heritability for the ultrasound traits were also higher when measured at yearling age rather than at postweaning age. The genetic correlations for fleece weight with live weights were positive (favorable) and moderate (approximately 0.5 ± 0.1), whereas those with FD were approximately 0.3 (unfavorable).The other wool traits had lower genetic correlations with the live weights. The genetic correlations for FAT and EMD with FD and SL were positive and low, with FDCV low to moderate negative, but variable with wool weight and negligible for the other wool traits. The genetic correlations for FAT and EMD with postweaning weight were positive and high (0.61 ± 0.18 to 0.75 ± 0.14) but were generally moderate with weights at other ages. Selection for increased live weight will result in a moderate correlated increase in wool weight as well as favorable reductions in breech cover and wrinkle, along with some unfavorable increases in FD and wool yellowness but little impact on other wool traits. The ultrasound meat traits, FAT and EMD, were highly positively genetically correlated (0.8), and selection to increase them would result in a small unfavorable correlated increase in FD, moderately favorable reductions in breech cover and wrinkle, but equivocal or negligible changes in other wool traits. The estimated parameters provide the basis for calculation of more accurate Australian Sheep Breeding Values and selection indexes that combine wool and meat objectives in Merino breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.