We have constructed a computer controlled translational couch to administer total body irradiation reproducibly and safely. The system has replaced the previous stationary anterior-posterior technique in our institution and 30 plus patients have been treated with it so far. In this technique, patients comfortably lie on a couch in supine and prone positions and are transported slowly through a narrow beam with the gantry in an upright position. Dose to the patient is determined by the couch velocity that is calculated based on physical parameters such as patient's dimensions, beam geometry, and machine dose rate. In our design, the couch velocity is continuously updated to compensate for machine dose rate fluctuations. The translational couch technique provides better dose uniformity within the patient compared to fixed beam techniques, and allows a more precise shielding block placement for organs at risk. At the same time, it presents a special challenge for dosimetry calculations. A dosimetry parameter is introduced that converts the moving beam output to the fixed beam output factor. Based on this factor, a simple dosimetry calculation method has been developed that takes advantage of conventional dosimetry parameters, eliminating extensive dosimetry measurements. Multiple point dose measurements within a phantom confirmed the validity of the calculation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.