Potassium dihydrogen phosphate (KDP) is a well known nonlinear optical (NLO) material with different applications. Since most of the amino acids exhibit NLO property, it is of interest to dope them in KDP. In the present study, amino acid L-arginine was doped in KDP. The doping of L-arginine was confirmed by FT-IR and paper chromatography. Thermogravimetry suggested that as the amount of doping increases the thermal stability decreases as well as the value of thermodynamic and kinetic parameters decreases. The second harmonic generation (SHG) efficiency of L-arginine doped KDP crystals was found to be increasing with doping concentration of L-arginine. The results are discussed here.
Potassium Dihydrogen Phosphate (KDP) is an excellent inorganic nonlinear optical (NLO) material with different device applications. Most of amino acids possess NLO property; therefore, it is of interest to dope them in KDP crystals. In the present study, amino acid L-alanine doped KDP crystals were grown by slow aqueous solvent evaporation technique. The doping of L-alanine was confirmed by the paper chromatography, the CHN analysis and the FT-IR spectroscopy. The powder XRD was carried out to assess the single phase nature of the samples. The effect of doping on thermal stability of the crystals was studied by TGA and the kinetic and thermodynamic parameters of dehydration were evaluated. As the amount of doping increased the thermal stability of crystals decreased. However, the second harmonic generation (SHG) efficiency and the UV-Vis spectroscopy studies indicated that as the L-alanine doping increased the SHG efficiency and optical transmission percentage increased. The dielectric behavior of the samples has been studied. The variation of dielectric constant, dielectric loss (tanδ), a.c.resistivity and a.c.conductivity with frequency of applied field in the range from 100 Hz to 100 kHz was studied. The dielectric constant and dielectric loss decreased with increase the value of frequency of applied field. The dielectric constant and the dielectric loss values of L-alanine doped KDP crystals were lower than the pure KDP crystals. The results are discussed.
Single crystals of pure and various amount of L-lysine doped KDP crystals were grown from aqueous solution. The doping of L-lysine was confirmed by CHN analysis and FT-IR spectroscopy. Powder XRD was carried out to assess the single phase nature of the samples. The effect of doping on thermal stability of the crystals was carried out by TGA and the kinetic and thermodynamic parameters of dehydration were evaluated. It was found that as the amount of doping of amino acid, L-lysine, increased the thermal stability of the grown crystals decreased. However, the second-harmonic generation (SHG) efficiency of Nd :YAG laser and UV-vis spectroscopy studies indicated that as the L-lysine doping increased in KDP crystals the SHG efficiency and optical transmission percentage increased. The dielectric constant and the dielectric loss of L-lysine doped KDP crystals are lower than the pure KDP crystals. Hence L-lysine doped KDP crystals are found to be more beneficial from an application point of view as compared to pure KDP crystals. The results are discussed.
The solubility, induction period and nucleation parameters of pure and amino acids like L-arginine, L-lysine and L-alanine doped potassium dihydrogen phosphate (KDP) crystals have been determined. Solubility study of pure and amino acids doped KDP crystals were carried out for different temperatures. The induction period was measured at different supersaturation level. The nucleation parameters like interfacial tension, radius of critical nucleus and energy of formation were calculated based on the classical theory of nucleation. Values of different parameters were found to be larger for amino acid doped crystals than pure KDP crystal.
Pure and various amino acids (L-histidine, L-threonine, DL-methionine) doped KDP crystals were grown by slow solvent evaporation technique. The doping of amino acids was confirmed by C, H, N analysis, FTIR spectroscopy and paper chromatography .Pure and doped KDP crystals were subjected to Vickers microhardness studies. Indentations were made on smooth (100) as grown faces of pure and doped crystals. The Vickers indenter loads were varied from 0.298 N to 0.981 N in order to study the effect of load on microhardness. A number of indents were made at each load and the mean diagonal length (d) was used in calculating the Vickers Hardness Number (HV). The Vickers micro-hardness decreased as amino acid doping level was increased indicating that the KDP crystals became softer after doping. The Indentation size effect (ISE) the Kicks law as well as PSR model was verified for all samples. The values of the load independent hardness and the Newtonian pressure (W) were higher in pure KDP crystals than the amino acids doped KDP crystals. It was found that as the doping concentration of amino acids increased the values of load independent hardness and Newtonian pressure decreased. Hays and Kendall law analysis was also applied to the hardness data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.