The glucagon-like peptides GLP-1 and GLP-2 are produced in enteroendocrine L cells of the small and large intestine and secreted in a nutrient-dependent manner. GLP-1 regulates nutrient assimilation via inhibition of gastric emptying and food intake. GLP-1 controls blood glucose following nutrient absorption via stimulation of glucose-dependent insulin secretion, insulin biosynthesis, islet proliferation, and neogenesis and inhibition of glucagon secretion. Experiments using GLP-1 antagonists and GLP-1 receptor-/- mice indicate that the glucoregulatory actions of GLP-1 are essential for glucose homeostasis. In the central nervous system, GLP-1 regulates hypothalamic-pituitary function and GLP-1-activated circuits mediate the CNS response to aversive stimulation. GLP-2 maintains the integrity of the intestinal mucosal epithelium via effects on gastric motility and nutrient absorption, crypt cell proliferation and apoptosis, and intestinal permeability. Both GLP-1 and GLP-2 are rapidly inactivated in the circulation as a consequence of amino-terminal cleavage by the enzyme dipeptidyl peptidase IV (DP IV). The actions of these peptides on nutrient absorption and energy homeostasis and the efficacy of GLP-1 and GLP-2 in animal models of diabetes and intestinal diseases, respectively, suggest that analogs of these peptides may be clinically useful for the treatment of human disease.
Leptin has profound effects on food intake, body weight, and neuroendocrine status. The lack of leptin results in hormonal and metabolic alterations and a dramatic increase in body weight. Leptin acts in the brain, especially in the hypothalamus; however, the central nervous system sites that respond to leptin have not been examined comprehensively. In this study, we explored systematically the distribution of leptin-activated neurons throughout the rat brain. Furthermore, we investigated the chemical identity of subsets of these leptin-activated cells. Fos-like immunoreactivity (Fos-IR) was investigated in the rat brain after two different doses of leptin (1.0 mg/kg and 5.0 mg/kg) at 2 hours and 6 hours after injections. The induction of Fos-IR was observed in hypothalamic nuclei, including the paraventricular nucleus (PVH), the retrochiasmatic area (RCA), the ventromedial nucleus (VMH), the dorsomedial nucleus (DMH), the arcuate nucleus (Arc), and the ventral premammillary nucleus (PMV). In addition, leptin-induced Fos-IR was found in several nuclei of the brainstem, including the superior lateral and external lateral subdivisions of the parabrachial nucleus (slPB and elPB, respectively), the supragenual nucleus, and the nucleus of the solitary tract (NTS). By using double-labeling immunohistochemistry or immunohistochemistry coupled with in situ hybridization, leptin-activated neurons were found that contained cocaine- and amphetamine-regulated transcript mRNA in several hypothalamic nuclei, including the RCA, Arc, DMH, and PMV. In the Arc and DMH, leptin-induced Fos-IR was observed in neurons that expressed neurotensin mRNA. Dynorphin neurons in the VMH and in the Arc also expressed Fos-IR. In the brainstem, we found that cholecystokinin neurons in the slPB and glucagon-like peptide-1 neurons in the NTS were activated by leptin. We also investigated the coexpression of Fos-IR and the long form of the leptin receptor (OBRb) mRNA. We found double-labeled neurons surrounding the median eminence and in the RCA, Arc, VMH, DMH, and PMV. However, in brainstem sites, very little OBRb mRNA was found; thus, there were very few double-labeled cells. These results suggest that leptin stimulates brain pathways containing neuropeptides that are involved in the regulation of energy balance, autonomic homeostasis, and neuroendocrine status.
1-Cells from rodents and humans express different receptors recognizing hormones of the secretin-glucagon family, which--when activated--synergize with glucose in the control of insulin release. We have recently reported that isolated islets from mice homozygous for a GLP-1 receptor null mutation (GLP-1R(-/-)) exhibit a well-preserved insulin-secretory response to glucose. This observation can be interpreted in two different ways: 1) the presence of GLP-1R is not essential for the secretory response of isolated islets to glucose alone; 2) beta-cells in GLP-1R(-/-) pancreases underwent compensatory changes in response to the null mutation. To explore these possibilities, we studied islets from control GLP-IR(+/+) mice in the absence or presence of 1 pmol/l exendin (9-39)amide, a specific and potent GLP-1R antagonist. Exendin (9-39)amide (15-min exposure) reduced glucose-induced insulin secretion from both perifused and statically incubated GLP-1R(+/+) islets by 50% (P < 0.05), and reduced islet cAMP production in parallel (P < 0.001). Furthermore, GLP-1R(-/-) islets exhibited: 1) reduced cAMP accumulation in the presence of 20 mmol/l glucose (knockout islets versus control islets, 12 +/- 1 vs. 27 +/- 3 fmol x islet(-1) x 15 min(-1); P < 0.001) and exaggerated acceleration of cAMP production by 10 nmol/l glucose-dependent insulinotropic peptide (GIP) (increase over 20 mmol/l glucose by GIP in knockout islets versus control islets: 66 +/- 5 vs. 14 +/- 3 fmol x islet(-1) x 15 min(-1); P < 0.001); 2) increased mean cytosolic [Ca2+] ([Ca2+]c) at 7, 10, and 15 mmol/l glucose in knockout islets versus control islets; and 3) signs of asynchrony of [Ca2+]c oscillations between different islet subregions. In conclusion, disruption of GLP-1R signaling is associated with reduced basal but enhanced GIP-stimulated cAMP production and abnormalities in basal and glucose-stimulated [Ca2+]c. These abnormalities suggest that GLP-1R signaling is an essential upstream component of multiple beta-cell signaling pathways.
Incretins are peptide hormones, exemplified by glucose-dependent insulinotropic peptide and glucagon-like peptide 1 that are released from the gut in response to nutrient ingestion and enhance glucose-stimulated insulin secretion. Incretin action is terminated due to N-terminal cleavage of the peptides by the aminopeptidase dipeptidyl peptidase IV (DPP-IV). Hence, inhibition of glucose-dependent insulinotropic peptide and glucagon-like peptide 1 degradation via reduction of DPP-IV activity represents an innovative strategy for enhancing incretin action in vivo. This review summarises the biology of incretin action, the structure, expression and pleiotropic biological activities of DPP-IV and provides an overview of the rationale, potential merits and theoretical pitfalls in the development of DPP-IV inhibitors for the treatment of type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.