The growing miniaturization demand of magnetic devices is fuelling the recent interest in bi-magnetic nanoparticles as ultimate small components. One of the main goals has been to reproduce practical magnetic properties observed so far in layered systems. In this context, although useful effects such as exchange bias or spring magnets have been demonstrated in core/shell nanoparticles, other interesting key properties for devices remain elusive. Here we show a robust antiferromagnetic (AFM) coupling in core/shell nanoparticles which, in turn, leads to the foremost elucidation of positive exchange bias in bi-magnetic hard-soft systems and the remarkable regulation of the resonance field and amplitude. The AFM coupling in iron oxide-manganese oxide based, soft/hard and hard/soft, core/shell nanoparticles is demonstrated by magnetometry, ferromagnetic resonance and X-ray magnetic circular dichroism. Monte Carlo simulations prove the consistency of the AFM coupling. This unique coupling could give rise to more advanced applications of bi-magnetic core/shell nanoparticles.
The crystal and magnetic structures of single-crystalline hexagonal LuFeO(3) films have been studied using x-ray, electron, and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO(3) films are room-temperature multiferroics.
We report direct imaging by means of x-ray photoemission electron microscopy of the dynamics of magnetic vortices confined in micron-size circular Permalloy dots that are 30 nm thick. The vortex core positions oscillate on a 10-ns timescale in a self-induced magnetostatic potential well after the inplane magnetic field is turned off. The measured oscillation frequencies as a function of the aspect ratio (thickness/radius) of the dots are in agreement with theoretical calculations presented for the same geometry.
We present the refinement of the crystal structure of charge-ordered LuFe2O4, based on single-crystal x-ray diffraction data. The arrangement of the different Fe-valence states, determined with bond-valence-sum analysis, corresponds to a stacking of charged Fe bilayers, in contrast with the polar bilayers previously suggested. This arrangement is supported by an analysis of x-ray magnetic circular dichroism spectra, which also evidences a strong charge-spin coupling. The nonpolar bilayers are inconsistent with charge order based ferroelectricity.
We investigate structural coupling of the MnO6 octahedra across a film/substrate interface and the resultant changes of the physical properties of ultrathin La2/3Sr1/3MnO3 (LSMO) films. In order to isolate the effect of interfacial MnO6 octahedral behavior from that of epitaxial strain, LSMO films are grown on substrates with different symmetry and similar lattice parameters. Ultrathin LSMO films show an increased magnetization and electrical conductivity on cubic (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) compared to those grown on orthorhombic NdGaO3 (NGO) substrates, an effect that subsides as the thickness of the films is increased. This study demonstrates that interfacial structural coupling can play a critical role in the functional properties of oxide heterostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.