The European Space Agency's three Swarm satellites were launched on 22 November 2013 into nearly polar, circular orbits, eventually reaching altitudes of 460 km (Swarm A and C) and 510 km (Swarm B). Swarm's multiyear mission is to make precision, multipoint measurements of low‐frequency magnetic and electric fields in Earth's ionosphere for the purpose of characterizing magnetic fields generated both inside and external to the Earth, along with the electric fields and other plasma parameters associated with electric current systems in the ionosphere and magnetosphere. Electric fields perpendicular to the magnetic field
trueB→ are determined through ion drift velocity
truev→i and magnetic field measurements via the relation
trueE→⊥=−truev→i×trueB→. Ion drift is derived from two‐dimensional images of low‐energy ion distribution functions provided by two Thermal Ion Imager (TII) sensors viewing in the horizontal and vertical planes;
truev→i is corrected for spacecraft potential as determined by two Langmuir probes (LPs) which also measure plasma density ne and electron temperature Te. The TII sensors use a microchannel‐plate‐intensified phosphor screen imaged by a charge‐coupled device to generate high‐resolution distribution images (66 × 40 pixels) at a rate of 16 s−1. Images are partially processed on board and further on the ground to generate calibrated data products at a rate of 2 s−1; these include
truev→i,
trueE→⊥, and ion temperature Ti in addition to electron temperature Te and plasma density ne from the LPs.
In this study we calibrate and validate in situ ionospheric electron density (Ne) and temperature (Te) measured with Langmuir probes (LPs) on the three Swarm satellites orbiting the Earth in circular, nearly polar orbits at ~500 km altitude. We assess the accuracy and reliability of the LP data (December 2013 to June 2016) by using nearly coincident measurements from low‐ and middle‐latitude incoherent scatter radars (ISRs), low‐latitude ionosondes, and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, covering all latitudes. The comparison results for plasma frequency (
f∝Ne) for each Swarm satellite are consistent across these three, principally different measurement techniques. It shows that the Swarm LPs systematically underestimate plasma frequency by about 10% (0.5–0.6 MHz). The correlation coefficients are high (≥0.97), indicating accurate relative variation in the Swarm LP densities. The comparison of Te from high‐gain LPs and those from ISRs reveals that all three satellites overestimate it by 300–400 K but exhibit high correlations (0.92–0.97) against the validation data. The low‐gain LP Te data show larger overestimation (~700 K) and lower correlation (0.86–0.90). The adjustment of the Swarm LP data based on Swarm‐ISR comparison results removes the systematic biases in the Swarm data and gives plasma frequencies and high‐ and low‐gain electron temperatures that are precise within about 0.4 MHz (8%), 150–230 K, and 260–360 K, respectively. We demonstrate that the applied correction significantly improves the agreement between (1) the plasma densities from Swarm, and from ionosondes and COSMIC, and (2) the Te from Swarm LPs and International Reference Ionosphere 2016.
We present three STEVE (strong thermal emission velocity enhancement) events in conjunction with Time History of Events and Macroscale Interactions (THEMIS) in the magnetosphere and Defense Meteorological Satellite Program (DMSP) and Swarm in the ionosphere, for determining equatorial and interhemispheric signatures of the STEVE purple/mauve arc and picket fence. Both types of STEVE emissions are associated with subauroral ion drifts (SAID), electron heating, and plasma waves. The magnetosphere observations show structured electrons and flows and waves (likely kinetic Alfven, magnetosonic, or lower‐hybrid waves) just outside the plasmasphere. Interestingly, the event with the picket fence had a >~1 keV electron structure detached from the electron plasma sheet, upward field‐aligned currents (FACs), and ultraviolet emissions in the conjugate hemisphere, while the event with only the mauve arc did not have precipitation or ultraviolet emission. We suggest that the electron precipitation drives the picket fence, and heating drives the mauve as thermal emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.