Many proteins within eukaryotic cells are organized spatially and functionally into membrane bound organelles and complexes. A protein's location thus provides information about its function. Here, we apply LOPIT, a mass-spectrometry based technique that simultaneously maps proteins to specific subcellular compartments, to Drosophila embryos. We determine the subcellular distribution of hundreds of proteins, and protein complexes. Our results reveal the potential of LOPIT to provide average snapshots of cells.
Cells are the fundamental building blocks of organisms and their organization holds the key to our understanding of the processes that control Development and Physiology as well as the mechanisms that underlie disease. Traditional methods of analysis of subcellular structure have relied on the purification of organelles and the painstaking biochemical description of their components. The arrival of high-throughput genomic and, more significantly, proteomic technologies has opened hereto unforeseen possibilities for this task. Recently two reports((1,2)) show how much can be gleaned from the combination of analytical centrifugation, mass spectrometry and advanced statistical techniques focused on a high-throughput analysis of the content and organization of plant and animal cells. The results reveal intriguing possibilities for the future and the possibility of mapping much of the known proteome onto our current map of the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.