powers erythrocyte invasion (6), while PfCDPK5 was shown to be critical for egress of P. falciparum merozoites from erythrocytes (7). In this report, we describe bumped kinase inhibitors (BKIs) that block infection of mosquitoes by malaria parasites. These compounds selectively and potently inhibit CDPK4, which is required for exflagellation of Plasmodium berghei microgametes (8) and has recently been shown to be connected with induction of exflagellation in P. falciparum microgametes (9), before fusion with the macrogamete, to form a zygote. The zygote undergoes transitional ookinete and oocyst stages to mature into infective sporozoites that are injected into a mammalian host during the female mosquito blood meal. Blocking exflagellation through the selective inhibition of Plasmodium CDPK4 would be expected to interrupt malaria transmission without being toxic to humans (10). Results and DiscussionWe have previously demonstrated that the ATP-binding pockets of Toxoplasma gondii and Cryptosporidium parvum CDPK1 can be selectively targeted by BKIs with large aromatic moieties displayed from the 3 position of the pyrazolopyrimidine scaffold due to the anomalously small gatekeeper residues (glycine) present in these kinases. Selective inhibition of Tg/CpCDPK1 with BKIs leads to blockage of mammalian-host cell invasion (11,12). PfCDPK4 has a serine at the gatekeeper position (Figure 1), smaller than the gatekeeper in almost all mammalian kinases, and an overall binding pocket that is very similar to those of TgCDPK1 and CpCDPK1. A number of compounds in our Tg/CpCDPK1 BKI library were found to inhibit recombinant PfCDPK4 (rPfCDPK4), the most potent being BKI-1 with an IC 50 (concentration to inhibit 50% of enzyme activity) of 4 nM (Table 1). However, not all compounds that are potent inhibitors of Tg/CpCDPK1 have comparable activity against rPfCDPK4. Despite the overall structural similarities in the ATP-binding pockets of CDPKs, small differences in the size of the gatekeeper residue may have a large effect on inhibitor potency.Effective control and eradication of malaria will require new tools to prevent transmission. Current antimalarial therapies targeting the asexual stage of Plasmodium do not prevent transmission of circulating gametocytes from infected humans to mosquitoes. Here, we describe a new class of transmission-blocking compounds, bumped kinase inhibitors (BKIs), which inhibit microgametocyte exflagellation. Oocyst formation and sporozoite production, necessary for transmission to mammals, were inhibited in mosquitoes fed on either BKI-1-treated human blood or mice treated with BKI-1. BKIs are hypothesized to act via inhibition of Plasmodium calcium-dependent protein kinase 4 and predicted to have little activity against mammalian kinases. Our data show that BKIs do not inhibit proliferation of mammalian cell lines and are well tolerated in mice. Used in combination with drugs active against asexual stages of Plasmodium, BKIs could prove an important tool for malaria control and eradication.
Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer’s, Parkinson’s, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (Aβ) protein of Alzheimer’s disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce Aβ cytotoxicity against mammalian cells by up to 90%. Although these compounds bind to Aβ fibers, they do not reduce fiber formation of Aβ. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of Aβ from oligomers to fibers.DOI: http://dx.doi.org/10.7554/eLife.00857.001
An overview of the methods used for high-throughput cloning and protein-expression screening of SSGCID hexahistidine recombinant proteins is provided. It is demonstrated that screening for recombinant proteins that are highly recoverable from immobilized metal-affinity chromatography improves the likelihood that a protein will produce a structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.