Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, plays a crucial role in B-cell maturation and mast cell activation. Although the structures of the unphosphorylated mouse BTK kinase domain and the unphosphorylated and phosphorylated kinase domains of human ITK are known, understanding the kinase selectivity profiles of BTK inhibitors has been hampered by the lack of availability of a high resolution, ligand-bound BTK structure. Here, we report the crystal structures of the human BTK kinase domain bound to either Dasatinib (BMS-354825) at 1.9 Å resolution or to 4-amino-5-(4-phenoxyphenyl)-7H-pyrrolospyrimidin-7-yl-cyclopentane at 1.6 Å resolution. This data provides information relevant to the development of small molecule inhibitors targeting BTK and the TEC family of nonreceptor tyrosine kinases. Analysis of the structural differences between the TEC and Src families of kinases near the Trp-Glu-Ile motif in the N-terminal region of the kinase domain suggests a mechanism of regulation of the TEC family members.
Background: Janus kinase 3 (Jak3) inhibitors hold promise for treatment of autoimmunity, but developing selective inhibitors is challenging. Results: We designed Jak3 inhibitors that avoid inhibition of the other JAKs. Conclusion: Our inhibitors possess high selectivity against other kinases and can potently inhibit Jak3 activity in cell-based assays. Significance: This class of irreversible inhibitors may be useful as selective agents of Jak3 inhibition.
Structural analysis of the known
NIK inhibitor 3 bound
to the kinase domain of TTBK1 led to the design and synthesis of a
novel class of azaindazole TTBK1 inhibitors exemplified by 8 (cell IC50: 571 nM). Systematic optimization of this
series of analogs led to the discovery of 31, a potent
(cell IC50: 315 nM) and selective TTBK inhibitor with suitable
CNS penetration (rat Kp,uu: 0.32) for in vivo proof of
pharmacology studies. The ability of 31 to inhibit tau
phosphorylation at the disease-relevant Ser 422 epitope was demonstrated
in both a mouse hypothermia and a rat developmental model and provided
evidence that modulation of this target may be relevant in the treatment
of Alzheimer’s disease and other tauopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.