We studied the long-term effect (about 45 years) of farmyard manure, sewage sludge and compost application in two increments on organic carbon (C org ), the amount (C mic ) and activity of the microbial biomass (soil respiration, dehydrogenase activity), total N content and N delivery of soils as compared to manuring with mineral fertilizers. The application of both increments of compost and the high sewage sludge application rate resulted in an increase in C org while soils treated with both compost application rates and the high farmyard manure application rate showed a significant increase in C mic . C mic /C org ranged between 1.7 and 3.3. Dehydrogenase activity and soil respiration were the greatest in the soil with the highest compost and farmyard manure application rates. Total soil N content was significantly higher in both compost treatments and in the treatment with the high sewage sludge application rate. This was accompanied by the highest N uptake of ryegrass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.