Aim: The aim of this research work is for the presence of Novel Diabetic Maculopathy Detection using modern algorithms, and comparing the Peak Signal to Noise Ratio (PSNR) between the C-Means clustering Algorithms and Watershed Algorithm. Materials and Methods: The sample images were taken from kaggle’s website. Samples were considered as (N=24) for C-Means Clustering Algorithm and (N=24) for Watershed algorithm in accordance with total sample size calculated using clinicalc.com by keeping alpha error-threshold value 0.05, enrollment ratio as 0.1, 95% confidence interval, G power as 80%. The Peak Signal to Noise Ratio was calculated by using the MATLAB Programming with a standard data set. Results: Comparison of PSNR is done by independent sample t-test using SPSS software. There is a statistical insignificant difference between C-Means Clustering Algorithm and Watershed algorithm with p=0.11, p>0.05 (PSNR = 35.3411) showed better results in comparison to Watershed Algorithm (PSNR =9.7420). Conclusion: C-Means Clustering Algorithms were found to give higher PSNR than in Watershed Algorithms for the Novel Diabetic Maculopathy Detection.
Aim: The aim of this research work is for the presence of Innovative Proliferative Diabetic Retinopathy Detection, using modern algorithms, and comparing the Peak Signal to Noise Ratio (PSNR) between Watershed Algorithms and K-Means Clustering Algorithm. Materials and methods: The sample images were taken from kaggle’s website. Samples were considered as (N=24) for Watershed Algorithm and (N=24) for K-means clustering algorithm in accordance with total sample size calculated using clinicalc.com by keeping alpha error-threshold value 0.05, enrollment ratio as 0.1, 95% confidence interval, G power as 80%. The PSNR was calculated by using the MATLAB Programming with a standard data set. Results: Comparison of PSNR is done by independent sample test using SPSS software. There is a statistical significant difference between Watershed Algorithm and K-means clustering algorithm with p<0.001, p<0.05 (PSNR=10.8205) using Watershed Algorithm showed better results in comparison to K-Means Clustering Algorithm (PSNR=9.7350). Conclusion: Watershed Algorithms were found to give higher PSNR than in K-Means Clustering Algorithms for the Innovative Proliferative Diabetic Retinopathy Detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.