Molecular dynamics simulations of flow between concentric rotating cylinders are performed. As the relative speed between the two cylinders is increased, a spontaneous flow bifurcation occurs and vortices form in a stationary-vortex or traveling-wavy-vortex configuration. The former emerges when the axial boundary conditions constrain the flow by reflection, and the traveling-wavy-vortex flow develops when the axial boundaries are relaxed to periodic conditions. The flow bifurcation is triggered by the thermal fluctuations in the system, and the resulting flow field is in agreement with previous experimental observations. In addition, the temporal growth of the Fourier mode that characterizes the wavy-vortex motion is well described by Landau's theory for Hopf bifurcations. The spatiotemporal energy spectrum is evaluated in order to characterize the instability in terms of its azimuthal wave number and wave speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.