No abstract
Ocean-bottom seismograph and multichannel streamer wide-angle seismic data are jointly analysed and compared with reflection images, bathymetric maps and potential field data, to reveal the detailed structure of layer 2 of the oceanic crust formed at the intermediate spreading Costa Rica Rift (CRR). Separate modelling of each wide-angle dataset independently reveals a gradual increase in P-wave velocity with distance (hence crustal age) from the ridge axis, with a model derived from their joint inversion, in turn, displaying a pattern of shorterwavelength structural complexity in addition to a background flow-line trend. Normalising against a ridgelocated reference velocity-depth model reveals that, off-axis, velocity perturbations are correlated with trends in basement roughness and uplift; regions of rougher and uplifted basement correlate with slower layer 2 velocity, <0.5 km s-1 faster than at the ridge axis, and thinner sediment cover, while smoother basement and locations where sediment cover forms a continuous seal over the oceanic basement, are mirrored by regions of relatively higher velocity, 1.0-1.4 km s-1 faster than at the CRR. These velocity variations are interpreted to reflect periodic changes in the degree of magma supply to the ridge axis. Using a combination of global and shipboard magnetic data, we derive a spreading history model for the CRR which shows that, for the past 5 Ma, spreading has been asymmetric. Comparing the seismic model structure with variations in full spreading rate over this period, reveals a correlation between periods of slower spreading and slower layer 2 velocity, basement roughness and uplift, and faster spreading, higher velocity and smoother basement structure. Zones of slower velocity also correlate with lows in the residual mantle Bouguer anomaly, interpreted as most likely reflecting corresponding regions of lower density in the lower crust or upper lithospheric mantle. Using ODP borehole 504B as ground-truth, we show that periods of faster spreading are associated with phases of magmatic accretion, interspersed by phases of increased asymmetric tectonic extension that likely facilitates fluid flow to the deeper crust and results in metamorphic alteration, manifest as the modelled density anomalies. Overall, our study shows that the mode of CRR crustal formation is sensitive to relatively small changes in full spreading rate within the range of 50-72 mm yr-1 , that tips the balance between magmatic and magmadominated crustal formation and/or tectonic stretching, as characterised by significant variation in the fabric and physical properties of layer 2. We further hypothesise that this inherited structure has a direct influence on the subsequent evolution of the crust through secondary alteration. We conclude that descriptive phrases like 'ocean crust formed at an intermediate-spreading rate' should no longer be used to describe an actual crustal formation process or resulting crustal structure as, over the full range of intermediate spreading rates, a fine tipping...
1401.5 mbsf (Hole C0002A; Expedition 314 Scientists, 2009a) and 0 to 980 mbsf (Hole C0002G; Expedition 332 Scientists, 2011). Coring at Site C0002 previously sampled 0-203.5 mbsf (Holes C0002C and C0002D) and 475-1057 mbsf (Hole C0002B) (Expedition 315 Scientists, 2009b). During riser operations, we expanded the data sets at Site C0002. Gas from drilling mud was analyzed in near real time in a mud-gas monitoring laboratory and was sampled for postcruise research. Continuous LWD/MWD data were collected in real time for quality control and for initial assessment of borehole environment and formation properties. Recorded-mode LWD data provided higher spatial sampling of downhole parameters and conditions. Cuttings were sampled for standard shipboard analyses and shore-based research. Riserless Methods 1
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.