In this study we report a detailed investigation of the polyphenol composition of Protea pure (P. cynaroides and P. neriifolia) and hybrid cultivars (Black beauty and Limelight). Aqueous methanol extracts of leaf and bract tissues were analyzed by ultrahigh pressure liquid chromatography hyphenated to photodiode array and ion mobility-high resolution mass spectrometric (UHPLC-PDA-IM-HR-MS) detection. A total of 67 metabolites were characterized based on their relative reversed phase (RP) retention, UV−vis spectra, low and high collision energy HR-MS data, and collisional cross section (CCS) values. These metabolites included 41 phenolic acid esters and 25 flavonoid derivatives, including 5 anthocyanins. In addition, an undescribed hydroxycinnamic acid-polygalatol ester, caffeoyl-O-polygalatol (1,5-anhydro-[6-O-caffeoyl]-sorbitol(glucitol)) was isolated and characterized by 1D and 2D NMR for the first time. This compound and its isomer are shown to be potential chemo-taxonomic markers.
Virgilia divaricata is a tree legume that grows in the Cape Floristic Region (CFA) in poor nutrient soils. A comparison between high and low phosphate growth conditions between roots and nodules was conducted and evaluated for the plants ability to cope under low phosphate stress conditions in V. divaricata. We proved that the plant copes with low phosphate stress through an increased allocation of resources, reliance on BNF and enhanced enzyme activity, especially PEPC. Nodules had a lower percentage decline in P compared to roots to uphold its metabolic functions. These strategies partly explain how V. divaricata can sustain growth despite LP conditions. Although the number of nodules declined with LP, their biomass remained unchanged in spite of a plant decline in dry weight. This is achieved via the high efficiency of BNF under P stress. During LP, nodules had a lower % decline at 34% compared to the roots at 88%. We attribute this behavior to P conservation strategies in LP nodules that imply an increase in a metabolic bypass that operates at the PEP branch point in glycolysis. The enhanced activities of nodule PEPC, MDH, and ME, whilst PK declines, suggests that under LP conditions an adenylate bypass was in operation either to synthesize more organic acids or to mediate pyruvate via a non-adenylate requiring metabolic route. Both possibilities represent a P-stress adaptation route and this is the first report of its kind for legume trees that are indigenous to low P, acid soils. Although BNF declined by a small percentage during LP, this P conservation was evident in the unchanged BNF efficiency per weight, and the increase in BNF efficiency per mol of P. It appears that legumes that are indigenous to acid soils, may be able to continue their reliance on BNF via increased allocation to nodules and also due to increase their efficiency for BNF on a P basis, owing to P-saving mechanisms such as the organic acid routes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.