This work reports on the fabrication and subsequent supercontinuum generation in a Ge-As-Se-Te/Ge-As-Se core/clad chalcogenide step-index fiber with an elliptical-core and an ultra-high numerical aperture of 1.88 ± 0.02 from 2.5-15 µm wavelength. The fiber has very low transmission loss of < 2 dB/m from 5-11 µm and a minimum loss of 0.72 ± 0.04 dB/m at 8.56 µm. Supercontinuum spanning from 2.1 µm to 11.5 µm with an average power of ∼6.5 mW was achieved by pumping a ∼16 cm fiber with a minor/major axis core diameter of 4.2/5.2 µm with 250 fs pulses at 4.65 µm wavelength and a repetition rate of 20.88 MHz. The effect of the elliptical-core was investigated by means of mechanical rotation of the fiber relative to the linear pump polarization, and it was found to cause a shift in the supercontinuum spectral edges by several hundred nanometers.
CONCLUSIONRadiation pattern and gain measurements on the conformal 6 X 9 slot array indicate that a completely analytic design process is feasible for small slot arrays in waveguide. The measured performance of the conformal array is gratifying, especially for a first trial of a radical design technique.
ACKNOWLEDGMENTThe helpful consultations of R. S. Elliott and L. A. Kurtz are gratefully acknowledged. Appreciation is also expressed to S. W.Lee for his assistance and the timely availability of his referenced report.
REFERENCES[ I ] R. S. Elliott and L. A. Kurtz, "The design of small slot arrays," in
The well-known method presented by Swanepoel can be used to determine the refractive index dispersion of thin films in the near-infrared region from wavelength values at maxima and minima, only, of the transmission interference fringes. In order to extend this method into the mid-infrared spectral region (our measurements are over the wavelength range from 2 to 25 lm), the method is improved by using a two-term Sellmeier model instead of the Cauchy model as the dispersive equation. Chalcogenide thin films of nominal batch composition As 40 Se 60 (at.%) and Ge 16 As 24 Se 15.5 Te 44.5 (at.%) are prepared by a hot-pressing technique. The refractive index dispersion of the chalcogenide thin films is determined by the improved method with a standard deviation of less than 0.0027. The accuracy of the method is shown to be better than 0.4% at a wavelength of 3.1 lm by comparison with a benchmark refractive index value obtained from prism measurements on Ge 16 As 24 Se 15.5 Te 44.5 material taken from the same batch.
A spontaneous emission fiber source operating in the mid-infrared (MIR) wavelength range from 3.5 to 8 µm is demonstrated for the first time at output power levels of at least 1 mW. The source is a Pr3+-doped selenide chalcogenide, multimode, glass fiber pumped with commercially available laser diodes operating at 1.470 µm, 1.511 µm and 1.690 µm. This MIR spontaneous emission fiber source offers a viable alternative to broadband mid-infrared supercontinuum fiber sources, which are comparatively complex and costly. The MIR emission wavelength range is significant for molecular sensing applications across biology and chemistry, and in medicine, agriculture, defense, and environmental monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.