We present a search for a narrow resonance in the inclusive diphoton final state using ∼ 2.7 fb −1 of data collected with the D0 detector at the Fermilab Tevatron pp Collider. We observe good agreement between the data and the background prediction, and set the first 95% C.L. upper limits on the production cross section times the branching ratio for decay into a pair of photons for resonance masses between 100 and 150 GeV. This search is also interpreted in the context of several models of electroweak symmetry breaking with a Higgs boson decaying into two photons.
We report a measurement of the mass of the top quark in lepton+jets final states of pp →tt data corresponding to 2.6 fb −1 of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider. A matrix-element method is developed that combines an in situ jet energy calibration with our standard jet energy scale derived from studies of γ+jet and dijet events. We then implement a flavor-dependent jet response correction through a novel approach. This method is used to measure a top-quark mass of mt = 176.01 ± 1.64 GeV. Combining this result with our previous result obtained on an independent data set, we measure a top-quark mass of mt = 174.94 ± 1.49 GeV for a total integrated luminosity of 3.6 fb −1 .
We present a measurement of forward-backward asymmetry in top quark-antiquark production in proton-antiproton collisions in the final state containing a lepton and at least four jets. Using a dataset corresponding to an integrated luminosity of 5.4 fb −1 , collected by the D0 experiment at the Fermilab Tevatron Collider, we measure the tt forward-backward asymmetry to be (9.2 ± 3.7)% at the reconstruction level. When corrected for detector acceptance and resolution, the asymmetry is found to be (19.6 ± 6.5)%. We also measure a corrected asymmetry based on the lepton from a top quark decay, found to be (15.2 ± 4.0)%. The results are compared to predictions based on the next-to-leading-order QCD generator mc@nlo. The sensitivity of the measured and predicted asymmetries to the modeling of gluon radiation is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.