The complexity of laser material processing can be greatly reduced using computer-generated phase reflection holographic scanners. These scanners direct and focus the beam of a carbon dioxide laser into a spot on the workpiece and then translate this spot over some general 2-D pattern as the scanner undergoes a simple 1-D motion. Procedures for constructing these scanners are presented, and the first-order aberrations introduced by them are analyzed. The primary aberrations cause the diffracted beam to focus to an astigmatic spot on the work surface. The severity of the astigmatism is proportional to the scan rate, scan angle, and f/number. A technique is presented in which the design of the scanner is adjusted so that the astigmatic image is aligned with the scan direction. The resolution perpendicular to the scan direction is the same as that of a scanner without aberrations of the same f/number. Materials processed using these scanners are presented to show their capabilities for carbon dioxide laser material processing. Power densities on the order of 10(6)/cm(2) can be readily obtained using the proposed technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.