The 4 April 2010 moment magnitude (M w) 7.2 El Mayor-Cucapah earthquake revealed the existence of a previously unidentifi ed fault system in Mexico that extends ~120 km from the northern tip of the Gulf of California to the U.S.-Mexico border. The system strikes northwest and is composed of at least seven major faults linked by numerous smaller faults, making this one of the most complex surface ruptures ever documented along the Pacifi c-North America plate boundary. Rupture propagated bilaterally through three distinct kinematic and geomorphic domains. Southeast of the epicenter, a broad region of distributed fracturing, liquefaction, and discontinuous fault rupture was controlled by a buried, southwest-dipping, dextral-normal fault system that extends ~53 km across the southern Colorado River delta. Northwest of the epicenter, the sense of vertical slip reverses as rupture propagated through multiple strands of an imbricate stack of eastdipping dextral-normal faults that extend ~55 km through the Sierra Cucapah. However, some coseismic slip (10-30 cm) was partitioned onto the west-dipping Laguna Salada fault, which extends parallel to the main rupture and defi nes the western margin of the Sierra Cucapah. In the northernmost domain, rupture terminates on a series of several north-northeast-striking cross-faults with minor offset (<8 cm) that cut uplifted and folded sediments of the northern Colorado River delta in the Yuha Desert. In the Sierra Cucapah, primary rupture occurred on four major faults separated by one fault branch and two accommodation zones. The accommodation zones are distributed in a left-stepping en echelon geometry, such that rupture passed systematically to structurally lower faults. The structurally lowest fault that ruptured in this event is inclined as shallowly as ~20°. Net surface offsets in the Sierra Cucapah average ~200 cm, with some reaching 300-400 cm, and rupture kinematics vary greatly along strike. Nonetheless, instantaneous extension directions are consistently oriented ~085° and the dominant slip direction is ~310°, which is slightly (~10°) more westerly than the expected azimuth of relative plate motion, but considerably more oblique to other nearby historical ruptures such as the 1992 Landers earthquake. Complex multifault ruptures are common in the central portion of the Pacifi c North American plate margin, which is affected by restraining bend tectonics, gravitational potential energy gradients, and the inherently three-dimensional strain of the transtensional and transpressional shear regimes that operate in this region.
Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the -3exception of a major increase in emitted flux in a broad wavelength region centered near 3 µm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 µm region throughout this span of time. In both stars the changes in the 1-5 µm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly-simultaneous photometric data.
We present new observations of the far-ultraviolet (FUV; 1100-2200 ) radiation field and the near-to mid-A IR (3-13.5 mm) spectral energy distribution (SED) of a sample of T Tauri stars selected on the basis of bright molecular disks (GM Aur, DM Tau, and LkCa 15). In each source we find evidence for Lya-induced H 2 fluorescence and an additional source of FUV continuum emission below 1700 . Comparison of the FUV spectrå A to a model of H 2 excitation suggests that the strong continuum emission is due to electron impact excitation of H 2 . The ultimate source of this excitation is likely X-ray irradiation that creates hot photoelectrons mixed in the molecular layer. Analysis of the SED of each object finds the presence of inner disk gaps with sizes of a few AU in each of these young (∼1 Myr) stellar systems. We propose that the presence of strong H 2 continuum emission and inner disk clearing are related by the increased penetration power of high-energy photons in gasrich regions with low grain opacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.