The activity and selectivity of the bimetallic NiCo/chrysotile catalyst during the hydrogenation of model objects (anthracene and phenanthrene) for 1 hour at an initial hydrogen pressure of 3 MPa and a temperature of 400 °C were studied. The chrysotile mineral used as a substrate for active centers of nickel and cobalt is a waste product of asbestos production at Kostanay Minerals JSC (the Republic of Kazakhstan). The catalyst was characterized by a complex of methods of physical and chemical analysis. The chrysotile mineral consists of nanotubes with an inner diameter of about 10 nm and an outer diameter of about 60 nm. The amount of hydrogenation products is 61.91 %, destruction — 15.08 % and isomerization — 8.37 % during the hydrogenation of anthracene. The amount of hydrogenation products is 26.09 %, and that of destruction is 2.51 % during the hydrogenation of phenanthrene. It was found that the catalyst selectively accelerates the hydrogenation reaction and allows increasing the yields of hydrogenation products. The schemes of the hydrogenation reaction of model objects were drawn up according to the results of gas chromatography-mass spectrometric analysis of hydrogenates.
The aim of this work is to determine the hydrogen distribution in primary coke oven tar and its fractions. The hydrogen distribution in the primary coke oven tar of «ShubarkolKomir» JSC, its distillate fractions and dis-tillation residue have been determined by the methods of elemental analysis, IR and PMR spectroscopy. The atomic ratio of C: H in the primary coke oven tar is 0.79. All fractions of the tar contain a large amount of al-kyl-substituted aromatic compounds, phenols and other substances with alkyl groups. The initial tarcharac-terized by a high content of hydrogen in the α-and β-positions to the aromatic ring, 29% and 34% respec-tively, which indicates a large number of alkyl substituents in the aromatic rings and near double bonds. The total amount of aliphatic and aromatic hydrogen in the tar is 79% and 21% respectively. Olefinic hydrogen is presented in the initial tar in an amount of 8%. It is possible to make a choice of techniques for further processing (hydrogenation, coking, thermal cracking) to obtain products with high added value on the basis of determination of the elemental composition, quantitative distribution of hydrogen in the primary coke oven tar and its fractions by the using of above mentioned physical and chemical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.