We report here that guanylyl cyclase activity is associated with two large integral membrane proteins (PfGC␣ and PfGC) in the human malaria parasite Plasmodium falciparum. Unusually, the proteins appear to be bifunctional; their amino-terminal regions have strong similarity with P-type ATPases, and the sequence and structure of the carboxyl-terminal regions conform to that of G protein-dependent adenylyl cyclases, with two sets of six transmembrane sequences, each followed by a catalytic domain (C1 and C2). However, amino acids that are enzymatically important and present in the C2 domain of mammalian adenylyl cyclases are located in the C1 domain of the P. falciparum proteins and vice versa. In addition, certain key residues in these domains are more characteristic of guanylyl cyclases. Consistent with this, guanylyl cyclase activity was obtained following expression of the catalytic domains of PfGC in Escherichia coli. In P. falciparum, expression of both genes was detectable in the sexual but not the asexual blood stages of the life cycle, and PfGC␣ was localized to the parasite/parasitophorous vacuole membrane region of gametocytes. The profound structural differences identified between mammalian and parasite guanylyl cyclases suggest that aspects of this signaling pathway may be mechanistically distinct.
SummarySex is an obligate step in the life cycle of the malaria parasite and occurs in the midgut of the mosquito vector. With both Plasmodium falciparum and Plasmodium berghei, the tryptophan metabolite xanthurenic acid induces the release of motile male gametes from red blood cells (exflagellation), a prerequisite for fertilization. The addition of cGMP or phosphodiesterase inhibitors to cultures of mature gametocytes has also been shown to stimulate exflagellation. Here, we demonstrate that there is a guanylyl cyclase activity associated with mature P. falciparum gametocyte membrane preparations, which is dependent on the presence of Mg 21 /Mn 21 but is inhibited by Ca 21 .
We report the characterization of an unusual adenylyl cyclase gene from Plasmodium falciparum, here designated PfAC␣. The level of mRNA expression is maximum during development of gametocytes (the sexual blood stage of the parasite life cycle). The gene is highly interrupted by 22 introns, and reverse transcriptase-PCR analysis revealed that there are multiple mRNA splice variants. One intron has three alternative 3-splice sites that confer the potential to encode distinct forms of the enzyme using alternative start codons. Deduced amino acid sequences predict membrane-spanning regions, the number of which can vary between two and six depending on the splice variant. Expression of a synthetic form of two of these variants in Xenopus oocytes and in Dictyostelium adenylyl cyclase-deficient mutants, confirms that PfAC␣ is a functional adenylyl cyclase. These results identify a novel mechanism in P. falciparum for the generation of multiple isoforms of a key, membranebound signaling molecule from a single genomic copy. Comparisons of the catalytic domains of PfAC␣ and a second putative P. falciparum adenylyl cyclase (PfAC) with those from other species reveal an unexpected similarity with adenylyl cyclases from certain prokaryotes including the cyanobacteria (blue green algae). In addition, the presence of an unusual active site substitution in a position that determines substrate specificity, also characteristic of these prokaryotic forms of the enzyme, further suggests a plastid origin for the Plasmodium cyclases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.