The main purpose of this study is to test a hypothesis about the effect of grain size on the resistance to destruction and changes in the strength and mechanical properties of oxide ceramics subjected to irradiation. WO3 powders were chosen as objects of study, which have a number of unique properties that meet the requirements for their use as a basis for inert matrices of dispersed nuclear fuel. The grain-size variation in WO3 ceramics was investigated by mechanochemical grinding of powders with different grinding speeds. Grinding conditions were experimentally selected to obtain powders with a high degree of size homogeneity, which were used for further research. During evaluation of the strength properties, it was found that a decrease in the grain size leads to an increase in the crack resistance, as well as the hardness of ceramics. The increase in strength properties can be explained by an increase in the dislocation density and the volume contribution of grain boundaries, which lead to hardening and an increase in resistance. During determination of the radiation damage resistance, it was found that a decrease in grain size to 50–70 nm leads to a decrease in the degree of radiation damage and the preservation of the resistance of irradiated ceramics to destruction and cracking.
In this work, we consider the effect of irradiation with heavy Kr15+ and Xe22+ ions on the change in the structural and strength properties of WO3 microparticles, which are among the candidates for inert matrix materials. Irradiation with heavy Kr15+ and Xe22+ ions was chosen to determine the possibility of simulation of radiation damage comparable to the impact of fission fragments. During the studies, it was found that the main changes in the structural properties with an increase in the irradiation fluence are associated with the crystal lattice deformation and its anisotropic distortion, which is most pronounced during irradiation with heavy Kr15+ ions. An assessment of the gaseous swelling effect due to the radiation damage accumulation showed that a change in the ion type during irradiation leads to an increase in the swelling value by more than 8–10%. Results of strength changes showed that the most intense decrease in the hardness of the near-surface layer is observed when the fluence reaches more than 1012 ion/cm2, which is typical for the effect of overlapping radiation damage in the material. The dependences obtained for the change in structural and strength properties can later be used to evaluate the effectiveness of the use of refractory oxide materials for their use in the creation of inert matrices of nuclear fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.