BackgroundSchizophrenia has been shown to be associated with reduced bone mineral density (BMD) and higher fracture risk. However, less is known whether antipsychotic treatment is associated with reduced BMD. Thus, we aimed to examine associations between antipsychotic use and BMD among men and women drawn from the general population.MethodsThis cross-sectional study involved 793 women and 587 men enrolled in the Geelong Osteoporosis Study (GOS). BMD was determined using dual-energy X-ray absorptiometry at the spine and hip. Information regarding socio-economic status (SES), current medication and/or supplementation use, lifestyle factors, and anthropometry was collected. Association between antipsychotic use and BMD was determined using linear regression after adjusting for potential confounders.ResultsOf the group, 33 women (4.2%) and 16 men (2.7%) currently used antipsychotics. Age was identified as an effect modifier in the association between antipsychotic use and BMD for women. Amongst women aged < 60 years, adjusted mean BMD was 11.1% lower at the spine [1.139 (95%CI 1.063–1.216) vs. 1.250 (95%CI 1.223–1.277) g/cm2, p = 0.005] for antipsychotic users compared to non-users. At the hip, age, weight, and smoking adjusted mean BMD was 9.9% lower [0.893 (95%CI 0.837–0.950) vs. 0.992 (95%CI 0.976–1.007) g/cm2, p < 0.001] for antipsychotic users in comparison with non-users. The pattern persisted following further adjustments. There was no association detected between antipsychotic use and BMD for women aged 60 years and over and for men.ConclusionOur data suggest that antipsychotic medication use is associated with reduced BMD in younger women but not older women or men.
Antipsychotics are commonly used in treating psychiatric disorders. These medications primarily target dopamine the serotonin receptors, they have some affinity to adrenergic, histamine, glutamate and muscarinic receptors. There is clinical evidence that antipsychotic use decreases BMD and increases fracture risk, with dopamine, serotonin and adrenergic receptor-signalling becoming an increasing area of focus where the presence of these receptors in osteoclasts and osteoblasts have been demonstrated. Osteoclasts and osteoblasts are the most important cells in the bone remodelling and the bone regeneration process where the activity of these cells determine the bone resorption and formation process in order to maintain healthy bone. However, an imbalance in osteoclast and osteoblast activity can lead to decreased BMD and increased fracture risk, which is also believed to be exacerbated by antipsychotics use. Therefore, the aim of this review is to provide an overview of the mechanisms of action of first, second and third generation antipsychotics and the expression profiles of dopamine, serotonin and adrenergic receptors during osteoclastogenesis and osteoblastogenesis.
Damage to bone leads to pain and loss of movement in the musculoskeletal system. Although bone can regenerate, sometimes it is damaged beyond its innate capacity. Research interest is increasingly turning to tissue engineering (TE) processes to provide a clinical solution for bone defects. Despite the increasing biomimicry of tissue-engineered scaffolds, significant gaps remain in creating the complex bone substitutes, which include the biochemical and physical conditions required to recapitulate bone cells’ natural growth, differentiation and maturation. Combining advanced biomaterials with new additive manufacturing technologies allows the development of 3D tissue, capable of forming cell aggregates and organoids based on natural and stimulated cues. Here, we provide an overview of the structure and mechanical properties of natural bone, the role of bone cells, the remodelling process, cytokines and signalling pathways, causes of bone defects and typical treatments and new TE strategies. We highlight processes of selecting biomaterials, cells and growth factors. Finally, we discuss innovative tissue-engineered models that have physiological and anatomical relevance for cancer treatments, injectable stimuli gels, and other therapeutic drug delivery systems. We also review current challenges and prospects of bone TE. Overall, this review serves as guide to understand and develop better tissue-engineered bone designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.