The results of an investigation concerning a mechanism of brittle fracture in glass reinforced plastic (GRP) rods used in non-ceramic insulators (NCI) are presented. Commercial grade GRP rods and GRP rods from actual insulators were exposed to ultra-pure water (UPW) and acids while being subjected to mechanical stresses. The experimental results revealed that water has the potential of inducing stress corrosion cracking on the fibers and hence brittle fracture in the rods. It is observed that the fracture proceeded faster when the rods were exposed to UPW than when exposed to acids. Furthermore, a brittle fracture in an epoxy cross-arm, which was installed in a region where the formation of acids in the atmosphere can be neglected, is analyzed. Based on these evidences, it is postulated that the failure of in-service NCI in the brittle mode can occur under the influence of water and mechanical stresses, and that the failure is more likely to happen with water than with acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.