Recombination creates mosaic genomes containing regions with mixed ancestry, and the accumulation of such events over time can complicate greatly many aspects of evolutionary inference. Here, we developed a sliding window bootstrap (SWB) method to generate genomic bootstrap (GB) barcodes to highlight the regions supporting phylogenetic relationships. The method was applied to an alignment of 56 sarbecoviruses, including SARS-CoV and SARS-CoV-2, responsible for the SARS epidemic and COVID-19 pandemic, respectively. The SWB analyses were also used to construct a consensus tree showing the most reliable relationships and better interpret hidden phylogenetic signals. Our results revealed that most relationships were supported by just a few genomic regions and confirmed that three divergent lineages could be found in bats from Yunnan: SCoVrC, which groups SARS-CoV related coronaviruses from China; SCoV2rC, which includes SARS-CoV-2 related coronaviruses from Southeast Asia and Yunnan; and YunSar, which contains a few highly divergent viruses recently described in Yunnan. The GB barcodes showed evidence for ancient recombination between SCoV2rC and YunSar genomes, as well as more recent recombination events between SCoVrC and SCoV2rC genomes. The recombination and phylogeographic patterns suggest a strong host-dependent selection of the viral RNA-dependent RNA polymerase. In addition, SARS-CoV-2 appears as a mosaic genome composed of regions sharing recent ancestry with three bat SCoV2rCs from Yunnan (RmYN02, RpYN06, and RaTG13) or related to more ancient ancestors in bats from Yunnan and Southeast Asia. Finally, our results suggest that viral circular RNAs may be key molecules for the mechanism of recombination.
Background:The variable clinical features of hereditary sensory and autonomic neuropathy (HSAN I) suggest heterogeneity. Some cases of idiopathic sensory neuropathy could be caused by missense mutations of SPTLC1 and RAB7 and not be recognised as familial. Objective: To screen persons with dominantly inherited HSAN I and others with idiopathic sensory neuropathies for known mutations of SPTLC1 and RAB7. Patients: DNA was examined from well characterised individuals of 25 kindreds with adult onset HSAN I for mutations of SPTLC1 and RAB7; 92 patients with idiopathic sensory neuropathy were also screened for known mutations of these genes. Results: Of the 25 kindreds, only one had a mutation (SPTLC1 399TRG). This kindred, and 10 without identified mutations, had prominent mutilating foot injuries with peroneal weakness. Of the remainder, 12 had foot insensitivity with injuries but no weakness, one had restless legs and burning feet, and one had dementia with hearing loss. No mutation of RAB7 was found in any of these. No known mutations of SPTLC1 or RAB7 were found in cases of idiopathic sensory neuropathy. Conclusions: Adult onset HSAN I is clinically and genetically heterogeneous and further work is required to identify additional genetic causes. Known SPTLC1or RAB7 mutations were not found in idiopathic sensory neuropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.