This paper explores the prediction of bankruptcy of Greek retail and wholesale trade companies and, in particular, the relation between the forecasting ability of the Logit model and the degree of homogeneity of the samples of bankrupt and healthy companies. A sample of 119 bankrupt companies was matchedwith an equal sample of healthy companies for the period 2003-2014, based on year, sector, and subsector, which was formed by random selection. Using the method of factor analysis, seven financial ratios were selected, which are the independent variables of the model. Applying the Logit model, the results showed a significant explanatory capability of the model in the trade sector as a whole as well as in the wholesale trade sub-sectors, which increases as the homogeneity of samples of bankrupt and healthy companies increases.In particular, the predictive capability of the model that we used improved by 14.3% regarding the classification of bankrupt firms when the same methodology was applied from the broader sector to the sub-sector. Moreover, the independent variable of capital structure has the highest stability and contributes substantially to the discriminant validity of the Logit model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.