We determine the top quark mass m t using t t pairs produced in the DO " detector by ͱsϭ1.8 TeV pp collisions in a 125 pb Ϫ1 exposure at the Fermilab Tevatron. We make a two constraint fit to m t in t t→bW ϩ b W Ϫ final states with one W boson decaying to qq and the other to e or . Likelihood fits to the data yield m t (lϩjets)ϭ173.3Ϯ5.6 (stat) Ϯ 5.5 (syst) GeV/c 2 . When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain m t ϭ172.1Ϯ5.2 (stat) Ϯ 4.9 (syst) GeV/c 2 . An alternate analysis, using three constraint fits to fixed top quark masses, gives m t (lϩjets)ϭ176.0 Ϯ7.9 (stat)Ϯ 4.8 (syst) GeV/c 2 , consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented. ͓S0556-2821͑98͒06815-5͔
We have searched for central production of a pair of photons with high transverse energies in pp collisions at √ s = 1.8 TeV using 70 pb −1 of data collected with the DØ detector at the Fermilab Tevatron in 1994-1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of 610, 870, or 1580 GeV/c 2 on the mass of a spin 0, 1/2, or 1 Dirac monopole.
We report a new measurement of the cross section for the production of isolated photons with transverse energies ( E(gamma)(T)) above 10 GeV and pseudorapidities |eta|<2.5 in p&pmacr; collisions at sqrt[s] = 1.8 TeV. The results are based on a data sample of 107.6 pb(-1) recorded during 1992-1995 with the D0 detector at the Fermilab Tevatron collider. The background, predominantly from jets which fragment to neutral mesons, was estimated using the longitudinal shower shape of photon candidates in the calorimeter. The measured cross section is in good agreement with the next-to-leading order QCD calculation for E(gamma)(T) greater, similar36 GeV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.